Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Polynomial roots calculator

google play badge app store badge

This free math tool finds the roots (zeros) of a given polynomial. The calculator computes exact solutions for quadratic, cubic, and quartic equations. Calculator shows all the work and provides step-by-step on how to find zeros and their multiplicities.

Find roots of polynomial $$ p(x) = 2x^3-4x^2-3x+6 $$

solution

The roots of polynomial $ p(x) $ are:

$$ \begin{aligned}x_1 &= 2\\[1 em]x_2 &= \frac{\sqrt{ 6 }}{ 2 }\\[1 em]x_3 &= - \frac{\sqrt{ 6 }}{ 2 } \end{aligned} $$

explanation

Step 1:

Use rational root test to find out that the $ \color{blue}{ x = 2 } $ is a root of polynomial $ 2x^3-4x^2-3x+6 $.

The Rational Root Theorem tells us that if the polynomial has a rational zero then it must be a fraction $ \dfrac{ \color{blue}{p}}{ \color{red}{q} } $, where $ p $ is a factor of the constant term and $ q $ is a factor of the leading coefficient.

The constant term is $ \color{blue}{ 6 } $, with factors of 1, 2, 3 and 6.

The leading coefficient is $ \color{red}{ 2 }$, with factors of 1 and 2.

The POSSIBLE zeroes are:

$$ \begin{aligned} \dfrac{\color{blue}{p}}{\color{red}{q}} = & \dfrac{ \text{ factors of 6 }}{\text{ factors of 2 }} = \pm \dfrac{\text{ ( 1, 2, 3, 6 ) }}{\text{ ( 1, 2 ) }} = \\[1 em] = & \pm \frac{ 1}{ 1} \pm \frac{ 2}{ 1} \pm \frac{ 3}{ 1} \pm \frac{ 6}{ 1} ~~ \pm \frac{ 1}{ 2} \pm \frac{ 2}{ 2} \pm \frac{ 3}{ 2} \pm \frac{ 6}{ 2} ~~ \end{aligned} $$

Substitute the possible roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.

We can see that $ p\left( 2 \right) = 0 $ so $ x = 2 $ is a root of a polynomial $ p(x) $.

To find remaining zeros we use Factor Theorem. This theorem states that if $ \dfrac{p}{q} $ is root of the polynomial then the polynomial can be divided by $ \color{blue}{qx − p} $. In this example we divide polynomial $ p $ by $ \color{blue}{ x-2 }$

$$ \frac{ 2x^3-4x^2-3x+6}{ x-2} = 2x^2-3 $$

Step 2:

The next rational root is $ x = 2 $

$$ \frac{ 2x^3-4x^2-3x+6}{ x-2} = 2x^2-3 $$

Step 3:

The solutions of $ 2x^2-3 = 0 $ are: $ x = - \dfrac{\sqrt{ 6 }}{ 2 } ~ \text{and} ~ x = \dfrac{\sqrt{ 6 }}{ 2 }$.

You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this quadratic equation.

Report an Error !

Script name : polynomial-roots-calculator

Form values: 2x^3-4x^2-3x+6 , g , Find roots of 2x^3-4x^2-3x+6 ,

Comment (optional)

Polynomial Roots Calculator
find real and complex zeros of a polynomial
help ↓↓ examples ↓↓ tutorial ↓↓
x^2-4x+3
2x^2-3x+1
x^3–2x^2–x+2
Display polynomial graph

Get Widget Code

working...
EXAMPLES
example 1:ex 1:
find roots of the polynomial $4x^2 - 10x + 4$
example 2:ex 2:
find polynomial roots $-2x^4 - x^3 + 189$
example 3:ex 3:
solve equation $6x^3 - 25x^2 + 2x + 8 = 0$
example 4:ex 4:
find polynomial roots $2x^3-x^2-x-3$
example 5:ex 5:
find roots $2x^5-x^4-14x^3-6x^2+24x+40$
Find more worked-out examples in the database of solved problems..
Search our database with more than 250 calculators
TUTORIAL

How to find polynomial roots ?

The process of finding polynomial roots depends on its degree. The degree is the largest exponent in the polynomial. For example, the degree of polynomial $ p(x) = 8x^{\color{red}{2}} + 3x -1 $ is $\color{red}{2}$.

We name polynomials according to their degree. For us, the most interesting ones are: quadratic - degree 2, Cubic - degree 3, and Quartic - degree 4.

Roots of quadratic polynomial

This is the standard form of a quadratic equation

$$ a\,x^2 + b\,x + c = 0 $$

The formula for the roots is

$$ x_1, x_2 = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a} $$

Example 01: Solve the equation $ 2x^2 + 3x - 14 = 0 $

In this case we have $ a = 2, b = 3 , c = -14 $, so the roots are:

$$ \begin{aligned} x_1, x_2 &= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{3^2-4 \cdot 2 \cdot (-14)}}{2\cdot2} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{9 + 4 \cdot 2 \cdot 14}}{4} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{121}}{4} \\ x_1, x_2 &= \dfrac{-3 \pm 11}{4} \\ x_1 &= \dfrac{-3 + 11}{4} = \dfrac{8}{4} = 2 \\ x_2 &= \dfrac{-3 - 11}{4} = \dfrac{-14}{4} = -\dfrac{7}{2} \end{aligned} $$

Quadratic equation - special cases

Sometimes, it is much easier not to use a formula for finding the roots of a quadratic equation.

Example 02: Solve the equation $ 2x^2 + 3x = 0 $

Because our equation now only has two terms, we can apply factoring. Using factoring we can reduce an original equation to two simple equations.

$$ \begin{aligned} 2x^2 + 3x &= 0 \\ \color{red}{x} \cdot \left( \color{blue}{2x + 3} \right) &= 0 \\ \color{red}{x = 0} \,\,\, \color{blue}{2x + 3} & \color{blue}{= 0} \\ \color{blue}{2x } & \color{blue}{= -3} \\ \color{blue}{x} &\color{blue}{= -\frac{3}{2}} \end{aligned} $$

Example 03: Solve equation $ 2x^2 - 10 = 0 $

This is also a quadratic equation that can be solved without using a quadratic formula.

. $$ \begin{aligned} 2x^2 - 18 &= 0 \\ 2x^2 &= 18 \\ x^2 &= 9 \\ \end{aligned} $$

The last equation actually has two solutions. The first one is obvious

$$ \color{blue}{x_1 = \sqrt{9} = 3} $$

and the second one is

$$ \color{blue}{x_2 = -\sqrt{9} = -3 }$$

Roots of cubic polynomial

To solve a cubic equation, the best strategy is to guess one of three roots.

Example 04: Solve the equation $ 2x^3 - 4x^2 - 3x + 6 = 0 $.

Step 1: Guess one root.

The good candidates for solutions are factors of the last coefficient in the equation. In this example, the last number is -6 so our guesses are

1, 2, 3, 6, -1, -2, -3 and -6

if we plug in $ \color{blue}{x = 2} $ into the equation we get,

$$ 2 \cdot \color{blue}{2}^3 - 4 \cdot \color{blue}{2}^2 - 3 \cdot \color{blue}{2} + 6 = \\\\ 2 \cdot 8 - 4 \cdot 4 - 6 - 6 = 0$$

So, $ \color{blue}{x = 2} $ is the root of the equation. Now we have to divide polynomial with $ \color{red}{x - \text{ROOT}} $

In this case we divide $ 2x^3 - x^2 - 3x - 6 $ by $ \color{red}{x - 2}$.

$$ ( 2x^3 - 4x^2 - 3x + 6 ) \div (x - 2) = 2x^2 - 3 $$

Now we use $ 2x^2 - 3 $ to find remaining roots

$$ \begin{aligned} 2x^2 - 3 &= 0 \\ 2x^2 &= 3 \\ x^2 &= \frac{3}{2} \\ x_1 & = \sqrt{ \frac{3}{2} } = \frac{\sqrt{6}}{2}\\ x_2 & = -\sqrt{ \frac{3}{2} } = - \frac{\sqrt{6}}{2} \end{aligned} $$

Cubic polynomial - factoring method

To solve cubic equations, we usually use the factoting method:

Example 05: Solve equation $ 2x^3 - 4x^2 - 3x + 6 = 0 $.

Notice that a cubic polynomial has four terms, and the most common factoring method for such polynomials is factoring by grouping.

$$ \begin{aligned} 2x^3 - 4x^2 - 3x + 6 &=\color{blue}{2x^3-4x^2} \color{red}{-3x + 6} = \\ &= \color{blue}{2x^2(x-2)} \color{red}{-3(x-2)} = \\ &= (x-2)(2x^2 - 3) \end{aligned} $$

Now we can split our equation into two, which are much easier to solve. The first one is $ x - 2 = 0 $ with a solution $ x = 2 $, and the second one is $ 2x^2 - 3 = 0 $.

$$ \begin{aligned} 2x^2 - 3 &= 0 \\ x^2 = \frac{3}{2} \\ x_1x_2 = \pm \sqrt{\frac{3}{2}} \end{aligned} $$
RESOURCES
440 432 081 solved problems