Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Polynomial roots calculator

google play badge app store badge

This free math tool finds the roots (zeros) of a given polynomial. The calculator computes exact solutions for quadratic, cubic, and quartic equations. Calculator shows all the work and provides step-by-step on how to find zeros and their multiplicities.

Polynomial Roots Calculator
find real and complex zeros of a polynomial
help ↓↓ examples ↓↓ tutorial ↓↓
x^2 - 4x + 3
2x^2 - 3x + 1
x^3 – 2x^2 – x + 2
display polynomial graph
working...
EXAMPLES
example 1:ex 1:
find roots of the polynomial $4x^2 - 10x + 4$
example 2:ex 2:
find polynomial roots $-2x^4 - x^3 + 189$
example 3:ex 3:
solve equation $6x^3 - 25x^2 + 2x + 8 = 0$
example 4:ex 4:
find polynomial roots $2x^3-x^2-x-3$
example 5:ex 5:
find roots $2x^5-x^4-14x^3-6x^2+24x+40$
Find more worked examples in popular problems.
Search our database of more than 200 calculators
TUTORIAL

How to find polynomial roots ?

The process of finding polynomial roots depends on its degree. The degree is the largest exponent in the polynomial. For example, the degree of polynomial $ p(x) = 8x^\color{red}{2} + 3x -1 $ is $\color{red}{2}$.

We name polynomials according to their degree. For us, the most interesting ones are: quadratic - degree 2, Cubic - degree 3, and Quartic - degree 4.

Roots of quadratic polynomial

This is the standard form of a quadratic equation

$$ a\,x^2 + b\,x + c = 0 $$

The formula for the roots is

$$ x_1, x_2 = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a} $$

Example 01: Solve the equation $ 2x^2 + 3x - 14 = 0 $

In this case we have $ a = 2, b = 3 , c = -14 $, so the roots are:

$$ \begin{aligned} x_1, x_2 &= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{3^2-4 \cdot 2 \cdot (-14)}}{2\cdot2} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{9 + 4 \cdot 2 \cdot 14}}{4} \\ x_1, x_2 &= \dfrac{-3 \pm \sqrt{121}}{4} \\ x_1, x_2 &= \dfrac{-3 \pm 11}{4} \\ x_1 &= \dfrac{-3 + 11}{4} = \dfrac{8}{4} = 2 \\ x_2 &= \dfrac{-3 - 11}{4} = \dfrac{-14}{4} = -\dfrac{7}{2} \end{aligned} $$

Quadratic equation - special cases

Sometimes, it is much easier not to use a formula for finding the roots of a quadratic equation.

Example 02: Solve the equation $ 2x^2 + 3x = 0 $

Because our equation now only has two terms, we can apply factoring. Using factoring we can reduce an original equation to two simple equations.

$$ \begin{aligned} 2x^2 + 3x &= 0 \\ \color{red}{x} \cdot \left( \color{blue}{2x + 3} \right) &= 0 \\ \color{red}{x = 0} \,\,\, \color{blue}{2x + 3} & \color{blue}{= 0} \\ \color{blue}{2x } & \color{blue}{= -3} \\ \color{blue}{x} &\color{blue}{= -\frac{3}{2}} \end{aligned} $$

Example 03: Solve equation $ 2x^2 - 10 = 0 $

This is also a quadratic equation that can be solved without using a quadratic formula.

. $$ \begin{aligned} 2x^2 - 18 &= 0 \\ 2x^2 &= 18 \\ x^2 &= 9 \\ \end{aligned} $$

The last equation actually has two solutions. The first one is obvious

$$ \color{blue}{x_1 = \sqrt{9} = 3} $$

and the second one is

$$ \color{blue}{x_2 = -\sqrt{9} = -3 }$$

Roots of cubic polynomial

To solve a cubic equation, the best strategy is to guess one of three roots.

Example 04: Solve the equation $ 2x^3 - 4x^2 - 3x + 6 = 0 $.

Step 1: Guess one root.

The good candidates for solutions are factors of the last coefficient in the equation. In this example, the last number is -6 so our guesses are

1, 2, 3, 6, -1, -2, -3 and -6

if we plug in $ \color{blue}{x = 2} $ into the equation we get,

$$ 2 \cdot \color{blue}{2}^3 - 4 \cdot \color{blue}{2}^2 - 3 \cdot \color{blue}{2} + 6 = \\\\ 2 \cdot 8 - 4 \cdot 4 - 6 - 6 = 0$$

So, $ \color{blue}{x = 2} $ is the root of the equation. Now we have to divide polynomial with $ \color{red}{x - \text{ROOT}} $

In this case we divide $ 2x^3 - x^2 - 3x - 6 $ by $ \color{red}{x - 2}$.

$$ ( 2x^3 - 4x^2 - 3x + 6 ) \div (x - 2) = 2x^2 - 3 $$

Now we use $ 2x^2 - 3 $ to find remaining roots

$$ \begin{aligned} 2x^2 - 3 &= 0 \\ 2x^2 &= 3 \\ x^2 &= \frac{3}{2} \\ x_1 & = \sqrt{ \frac{3}{2} } = \frac{\sqrt{6}}{2}\\ x_2 & = -\sqrt{ \frac{3}{2} } = - \frac{\sqrt{6}}{2} \end{aligned} $$

Cubic polynomial - factoring method

To solve cubic equations, we usually use the factoting method:

Example 05: Solve equation $ 2x^3 - 4x^2 - 3x + 6 = 0 $.

Notice that a cubic polynomial has four terms, and the most common factoring method for such polynomials is factoring by grouping.

$$ \begin{aligned} 2x^3 - 4x^2 - 3x + 6 &=\color{blue}{2x^3-4x^2} \color{red}{-3x + 6} = \\ &= \color{blue}{2x^2(x-2)} \color{red}{-3(x-2)} = \\ &= (x-2)(2x^2 - 3) \end{aligned} $$

Now we can split our equation into two, which are much easier to solve. The first one is $ x - 2 = 0 $ with a solution $ x = 2 $, and the second one is $ 2x^2 - 3 = 0 $.

$$ \begin{aligned} 2x^2 - 3 &= 0 \\ x^2 = \frac{3}{2} \\ x_1x_2 = \pm \sqrt{\frac{3}{2}} \end{aligned} $$

Was this calculator helpful?

Yes No
438 268 646 solved problems