Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Parallel and perpendicular line calculator

This calculator find and plot equations of parallel and perpendicular to the given line and passes through given point. The calculator will generate a step-by-step explanation on how to obtain the result.

Parallel and Perpendicular Line calculator
0 1 2 3 4 5 6 7 8 9 - / . del
Parallel line through the given point
Perpendicular line through the given point
Show me an explanation

How to find line through a point parallel to a given line ?

Equation of the line that passes through the point $A(x_0, y_0)$ and is parallel to the line $y = mx + b$ is:

$$ {\color{blue}{ y - y_0 = m(x-x_0) }} $$

Example:

parallel lines

Find the equation of the line that passes through the point $A(-1, 2)$ and is parallel to the line $y = 2x - 3$

Solution:

In this example we have: $ x_0 = -1,~~ y_0 = 2,~~ m = 2$. So we have:

$$ \begin{aligned} y - y_0 & = m(x-x_0) \\ y - 2 & = 2(x-(-1)) \\ y - 2 & = 2x + 2 \\ y & = 2x + 2 + 2 \\ {\color{blue}{ y }} & {\color{blue}{ = 2x + 4}} \end{aligned} $$

Note : If you want to solve this problem using above calculator, you need to rewrite line equation in general form ( $2x - y - 3 = 0$ )


How to find line through a point perpendicular to a given line ??

Equation of the line that passes through the point $A(x_0, y_0)$ and is perpendicular to the line $y = mx + b$ is:

$$ {\color{blue}{ y - y_0 = -\frac{1}{m}(x-x_0) }} $$

Example:

Find the equation of the line that passes through the point $A(-1, 2)$ and is perpendicular to the line $y = 2x - 3$

Solution:

perpendicular lines

In this example we have: $ x_0 = -1,~~ y_0 = 2,~~ m = 2$. So we have:

$$ \begin{aligned} y - y_0 & = -\frac{1}{m}(x-x_0) \\ y - 2 & = -\frac{1}{2}(x-(-1)) \\ y - 2 & = -\frac{1}{2}(x + 1) \\ (y - 2)\cdot{\color{red}{2}} & = -\frac{1}{2}\cdot{\color{red}{2}}(x + 1) \\ 2(y - 2) & = -(x + 1)\\ 2y - 4 & = -x - 1\\ 2y & = -x + 3\\ {\color{blue}{ y }} & = {\color{blue}{-\frac{1}{2}x + \frac{3}{2} }} \end{aligned} $$

Note : If you want to solve this problem using above calculator, you need to rewrite line equation in general form ( $2x - y - 3 = 0$ )

Quick Calculator Search

Was this calculator helpful?

Yes No
108 741 688 solved problems