Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Equilateral Triangle Calculator

google play badge app store badge

Input one element of an equilateral triangle, and the calculator will find the five unknown elements. The calculator will provide a step-by-step explanation on how to calculate missing elements.

Equilateral triangle calculator
Input the side, perimeter, area, circumcircle radius or altitude of an equilateral triangle, then choose a missing element.
help ↓↓ examples ↓↓ tutorial ↓↓
Solve for
Input one element of an equilateral triangle.
a =
 
h =
P =
 
A =
R =
 
r =
thumb_up 259 thumb_down

Get Widget Code

working...
Equilateral triangle formulas
Equilateral triangle with sides, height and incircle radius.
$$ A = \frac{3 \, a^2 \sqrt{3}}{4} $$
area
$$ h = \frac{a \sqrt{3}}{2} $$
height
$$ r = \frac{a \sqrt{3}}{6} $$
incircle radius
$$ R = \frac{a \sqrt{3}}{3} $$
circumcircle radius
Examples
ex 1:
What is the area of an equilateral triangle of perimeter $P = 6\sqrt{2}$.
ex 2:
What is the perimeter of an equilateral triangle if its height is $\dfrac{20}{3} cm^2$?
ex 3:
If base of an equilateral triangle 50 inches long, what is the triangle's height?
ex 4:
$\triangle ABC$ is an equilateral triangle with area A = 24. Find the perimeter.
Find more worked-out examples in our database of solved problems..
TUTORIAL

Equilateral triangle calculations

This calculator uses the following formulas to find the missing values of a triangle.

Perimeter: $$ P = 3 \cdot a $$ equilateral triangle
Area: $$ A = \frac{a^2 \sqrt{3}}{4} $$
Height: $$ h = \frac{a \sqrt{3}}{2} $$
Circumcircle radius: $$ R = \frac{a \sqrt{3}}{3} $$
Incircle radius: $$ r = \frac{a \sqrt{3}}{6} $$

Example 01 :

What is the area of an equilateral triangle whose side is $ 12 cm $.

Solution:

In this example we have $ a = 12 $.

To find the area we will use formula $A = \dfrac{a^2 \sqrt{3}}{4} $

$$ \begin{aligned} A & = \frac{a^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{12^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{144 \sqrt{3}}{4} \\[ 1 em] A & = 36 \sqrt{3} \end{aligned} $$

Example 02 :

What is the side of an equilateral triangle whose height is 15 cm?

Solution:

In this example we have $ h = 15 $.

To find height we will use formula $h = \dfrac{a \sqrt{3}}{2} $

$$ \begin{aligned} h & = \frac{a \sqrt{3}}{2} \\[ 1 em] 15 & = \frac{a \sqrt{3}}{2} \\[ 1 em] a \sqrt{3} & = 15 \cdot 2 \\[ 1 em] a \sqrt{3} & = 30 \\[1 em] a & = \frac{30}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\[1 em] a & = \frac{30 \sqrt{3}}{3} \\[ 1 em] a & = 10 \sqrt{3} \approx 17.3 \end{aligned} $$
Search our database with more than 300 calculators
362 861 664 solved problems
×
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.