Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

# Equilateral Triangle Calculator

Input one element of an equilateral triangle, and the calculator will find the five unknown elements. The calculator will provide a step-by-step explanation on how to calculate missing elements.

Equilateral triangle calculator
Input the side, perimeter, area, circumcircle radius or altitude of an equilateral triangle, then choose a missing element.
help ↓↓ examples ↓↓ tutorial ↓↓
Solve for
Input one element of an equilateral triangle.
a =

h =
P =

A =
R =

r =
working...
Equilateral triangle formulas
 $$A = \frac{3 \, a^2 \sqrt{3}}{4}$$ area
 $$h = \frac{a \sqrt{3}}{2}$$ height
 $$r = \frac{a \sqrt{3}}{6}$$ incircle radius
 $$R = \frac{a \sqrt{3}}{3}$$ circumcircle radius
Examples
ex 1:
What is the area of an equilateral triangle of perimeter $P = 6\sqrt{2}$.
ex 2:
What is the perimeter of an equilateral triangle if its height is $\dfrac{20}{3} cm^2$?
ex 3:
If base of an equilateral triangle 50 inches long, what is the triangle's height?
ex 4:
$\triangle ABC$ is an equilateral triangle with area A = 24. Find the perimeter.
Related calculators
Find more worked-out examples in our database of solved problems..
TUTORIAL

## Equilateral triangle calculations

This calculator uses the following formulas to find the missing values of a triangle.

 Perimeter: $$P = 3 \cdot a$$ Area: $$A = \frac{a^2 \sqrt{3}}{4}$$ Height: $$h = \frac{a \sqrt{3}}{2}$$ Circumcircle radius: $$R = \frac{a \sqrt{3}}{3}$$ Incircle radius: $$r = \frac{a \sqrt{3}}{6}$$

### Example 01 :

What is the area of an equilateral triangle whose side is $12 cm$.

### Solution:

In this example we have $a = 12$.

To find the area we will use formula $A = \dfrac{a^2 \sqrt{3}}{4}$

\begin{aligned} A & = \frac{a^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{12^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{144 \sqrt{3}}{4} \\[ 1 em] A & = 36 \sqrt{3} \end{aligned}

### Example 02 :

What is the side of an equilateral triangle whose height is 15 cm?

### Solution:

In this example we have $h = 15$.

To find height we will use formula $h = \dfrac{a \sqrt{3}}{2}$

\begin{aligned} h & = \frac{a \sqrt{3}}{2} \\[ 1 em] 15 & = \frac{a \sqrt{3}}{2} \\[ 1 em] a \sqrt{3} & = 15 \cdot 2 \\[ 1 em] a \sqrt{3} & = 30 \\[1 em] a & = \frac{30}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\[1 em] a & = \frac{30 \sqrt{3}}{3} \\[ 1 em] a & = 10 \sqrt{3} \approx 17.3 \end{aligned}
Search our database with more than 300 calculators
441 944 102 solved problems
×
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.