- All Math Calculators
- ::
- Analytic Geometry
- ::
- Triangle calculator

This calculator can compute **area** of the triangle, **altitudes** of a triangle, **medians** of a triangle,
**centroid**, **circumcenter** and **orthocenter**.

examples

example 1:

Find area of a triangle whose vertices are $(4, 4), (-2, 3)$ and $(-4, -5)$.

example 2:

Find area of a triangle whose vertices are
$\left(\frac{4}{3}, 3.5\right), \left(8, -\frac{1}{2}\right)$ and $(-7, 5.2)$.

example 3:

Find altitudes of a triangle whose vertices are
$(1,1), (3,5)$ and $(-10, 8)$.

example 4:

Find circumcenter of a triangle whose vertices are
$(-2,-5), (3,4)$ and $(10, -3)$.

The **area** of a triangle whose vertices
are $A(x_A, y_A), B(x_B, y_B)$ and $C(x_C, y_C)$ is given by :

**Example:**

Find the area of the triangle whose vertices are $A(2, 4), B(3, -1)$ and $C(-3, 3)$.

**Solution:**

In this example we have: $ x_A = 2,~~ y_A = 4,~~ x_B = 3,~~ y_B = -1, x_C = -3,~~ y_C = 3$. So we have:

The **centroid** of a triangle whose vertices
are $A(x_A, y_A), B(x_B, y_B)$ and $C(x_C, y_C)$ is given by :

**Example:**

Find the centroid of the triangle whose vertices are $A(2, 4), B(3, -1)$ and $C(-3, 3)$.

**Solution:**

Using the same $x_A, y_A, x_B, y_B, x_C, y_C$, as in previous example we have:

$$ \begin{aligned} (x,y) & = \left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right) \\ (x,y) & = \left(\frac{2 + 3 - 3}{3}, \frac{4 - 1 + 3}{3}\right) \\ (x,y) & = \left(\frac{2}{3}, 2\right) \\ \end{aligned} $$**Quick Calculator Search**

** Please tell me how can I make this better.**

65 093 249 solved problems