Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

3x3 system of equations solver

google play badge app store badge

This calculator solves system of three equations with three unknowns (3x3 system). The calculator will use the Gaussian elimination or Cramer's rule to generate a step by step explanation.

3x3 System of equations solver
Two solving methods + detailed steps.
help ↓↓ examples ↓↓
Solve using Gaussian elimination method (default)
Solve using Cramer's rule
Find approximate solution
Hide steps
working...
examples
example 1:ex 1:
Solve using Gaussian elimination: $$ \begin{aligned} x + 2y - z & = 2 \\[2ex] x - y + 2z & = 5 \\[2ex] 2x + 2y + 2z & = 12 \end{aligned} $$
example 2:ex 2:
Solve using Cramer's rule $$ \begin{aligned} -x + \frac{2}{3}y - 2z & = 2 \\[2ex] 5x + 7y - 5z & = 6 \\[2ex] \frac{1}{4}x + y - \frac{1}{2}z & = 2 \end{aligned} $$
Find more worked-out examples in the database of solved problems..

About Cramer's rule

This calculator uses Cramer's rule to solve systems of three equations with three unknowns. The Cramer's rule can be stated as follows:

Given the system:

$$ \begin{aligned} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{aligned} $$

with

$$ D = \left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ \end{array}\right| \ne 0 $$ $$ D_x = \left|\begin{array}{ccc} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \\ \end{array}\right| $$ $$ D_y = \left|\begin{array}{ccc} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \\ \end{array}\right| $$ $$ D_z = \left|\begin{array}{ccc} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \\ \end{array}\right| $$

then the solution of this system is:

$$ x = \frac{D_x}{D} $$ $$ y = \frac{D_y}{D} $$ $$ z = \frac{D_z}{D} $$

Example: Solve the system of equations using Cramer's rule

$$ \begin{aligned} 4x + 5y -2z= & -14 \\ 7x - ~y +2z= & 42 \\ 3x + ~y + 4z= & 28 \\ \end{aligned} $$

Solution: First we compute $ D,~ D_x,~ D_y $ and $ D_z $.

$$ \begin{aligned} & D~~ = \left|\begin{array}{ccc} {\color{blue}{4}} & {\color{red}{~5}} & {\color{green}{-2}} \\ {\color{blue}{7}} & {\color{red}{-1}} & {\color{green}{~2}} \\ {\color{blue}{3}} & {\color{red}{~1}} & {\color{green}{~4}} \end{array}\right| = -16 + 30 - 14 - 6 - 8 - 140 = -154\\ & D_x = \left|\begin{array}{ccc} -14 & {\color{red}{~5}} & {\color{green}{-2}} \\ ~42 & {\color{red}{-1}} & {\color{green}{~2}} \\ ~28 & {\color{red}{1}} & {\color{green}{~4}} \end{array}\right| = 56 + 280 - 84 - 56 + 28 - 840 = -616\\ & D_y = \left|\begin{array}{ccc} {\color{blue}{4}} & -14 & {\color{green}{-2}} \\ {\color{blue}{7}} & ~42 & {\color{green}{~2}} \\ {\color{blue}{3}} & ~28 & {\color{green}{~4}} \end{array}\right| = 672 - 84 - 392 + 252 - 224 + 392 = 616\\ & D_Z = \left|\begin{array}{ccc} {\color{blue}{4}} & {\color{red}{~5}} & -14 \\ {\color{blue}{7}} & {\color{red}{-1}} & ~42 \\ {\color{blue}{3}} & {\color{red}{~1}} & ~28 \end{array}\right| = -112 + 630 - 98 - 42 - 168 - 980 = -770\\ \end{aligned} $$

Therefore,

$$ \begin{aligned} & x = \frac{D_x}{D} = \frac{-616}{-154} = 4 \\ & y = \frac{D_y}{D} = \frac{ 616}{-154} = -4 \\ & z = \frac{D_z}{D} = \frac{-770}{-154} = 5 \end{aligned} $$

Note: You can check the solution using above calculator

Search our database with more than 250 calculators
439 064 765 solved problems