Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

# Calculator for polynomial operations

This solver performs basic arithmetic operations on polynomials (addition, subtraction, multiplication and division).
The calculator displays complete work and a detailed step-by-step explanation for each operation.

Operations on polynomials - with steps
add, subtract, multiply and divide polynomials
show help ↓↓ examples ↓↓ tutorial ↓↓
(3x^2+4x-3) - (8x+5)
(3x-5)(x^2+2x-4)
 Add polynomials Subtract polynomials Multiply polynomials (default) Divide polynomials
Hide steps
working...
EXAMPLES
example 1:ex 1:
$(3x-4)+(5+3x-4x^2)$
example 2:ex 2:
$(9x+5)-(3x-3)$
example 3:ex 3:
$(-2x^6 + x^5 - 3x^2 - 4x + 7) - (x^5 + 2x^2 - 4x + 4)$
example 4:ex 4:
$(2x+3)\cdot(5x-3)$
example 5:ex 5:
$(x^2 - x + 3)\cdot(2x^2 + 4x - 3)$
example 6:ex 6:
$\dfrac{x^3 + x^2 + 4}{x + 2}$
Search our database of more than 200 calculators
TUTORIAL

## Operations on polynomials

In this short tutorial, you will learn how to perform basic operations on polynomials.
The basic operations are 1. addition 2. subtraction 3. FOIL method for binomial multiplication 4. standard multiplication 5. division by monomial and 6. long division. Note that this calculator displays a step-by-step explanation for each of these operations. Nevertheless, let's start with addition.

### 1A: Polynomial addition - horizontal

Example 01: Add $(2a+5) + (4a-3)$

First we will remove the parenthesis because there are no minus sign in front of the brackets:

$$(2a+5) + (4a-3) = 2a + 5 + 4a - 3$$

We'll now group the like terms:

$$2a + 5 + 4a - 3 = 2a + 4a + 5 - 3$$

Finally, we combine like terms:

$$2a + 4a + 5 - 3 = 6a + 2$$

Putting all together we have

\begin{aligned} (2a+5) + (4a-3) \overbrace{=}^{\text{remove par.}}& \color{blue}{2a} + 5 + \color{blue}{4a} - 3 = \\ \overbrace{=}^{\text{group like terms}}& \color{blue}{2a + 4a} + 5 - 3 = \\ \overbrace{=}^{\text{combine like terms}}& \color{blue}{6a} + 2 \end{aligned}

### 1B: Polynomial addition - vertical

Example 02: Add $(5x^3 - 3x^2 - 2x + 5) + (-x^3 + 2x^2 - 7)$

To perform vertical addition, we must arrange like terms one above the other.

$$\begin{array}{rrr} \color{blue}{5x^3} & \color{orangered}{-3x^2} & -2x & \color{purple}{5} \\ \color{blue}{-x^3} & \color{orangered}{2x^2} & & \color{purple}{-7} \\ \hline \end{array}$$

It is now quite simple to combine like terms

$$\begin{array}{rrr} \color{blue}{5x^3} & \color{orangered}{-3x^2} & -2x & \color{purple}{5} \\ \color{blue}{-x^3} & \color{orangered}{2x^2} & & \color{purple}{-7} \\ \hline \color{blue}{4x^3} & \color{orangered}{-x^2} & -2x & \color{purple}{-2} \end{array}$$

$$4x^2 -x^2-2x-2$$

### 2B: Polynomial subtraction - vertical

Example 04: Subtract $(2x^2 + x - 3) - (x^2 - 3x + 5)$

Place like terms one above the other, but in the second polynomial, we must now alter all of the signs.

$$\begin{array}{rrrr} 2x^2 & x & -2 \\ \color{red}{\bf{-}}x^2 & \color{red}{\bf {+}}3x & \color{red}{\bf{-}}5 \\ \hline \end{array}$$

Now we can combine like terms

$$\begin{array}{rrrr} 2x^2 & x & -2 \\ -x^2 & 3x & -5 \\ \hline x^2 & 4x & -7 \\ \end{array}$$

So the answer is $x^2 + 4x - 7$

### 2A: Polynomial subtraction - horizontal

Example 03: Subtract $(5x - 7) - (3x - 3)$

Here we remove parenthesis by changing the sign of every term in the second bracket.

$$(5x - 7) \color{blue}{- (3x - 3)} = 5x - 7 \color{blue}{- 3x + 3}$$

Now, as in previous example, group the like terms ...

$$5x - 7 -3x + 3 = 5x - 3x -7 + 3$$

...and combine them:

$$5x - 3x - 7 + 3 = 2x - 4$$

Putting all together we have

\begin{aligned} (5x-7) - (3x-3) \overbrace{=}^{\text{remove par.}}& 5x - 7 - 3x + 3 = \\ \overbrace{=}^{\text{group like terms}}& 5x - 3x - 7 + 3 = \\ \overbrace{=}^{\text{combine like terms}}& 2x - 4 \end{aligned}

### 3: Polynomial multiplication - FOIL

This method is used to multiply two binomials. The best way to explain the FOIL method is to use an example:

Example 05: Use FOIL method to multiply $(5a + 2) \cdot(2a - 3)$

$$\begin{array}{lcccc} \text{First} & : & 5a & \cdot & 2a & = & 10a^2 \\ \text{Outer} & : & 5a & \cdot & -3 & = & -15a \\ \text{Inner} & : & 2 & \cdot & 2a & = & 4a \\ \text{Last} & : & 2 & \cdot & -3 & = & -6 \\ \hline \end{array}$$
\begin{aligned} (5a + 2) \cdot(2a - 3) &= \underbrace{10a^2}_{F} - \underbrace{15a}_{O} + \underbrace{4a}_{I} - \underbrace{6}_{L} = \\[1em] &= 10a^2 - 11a - 6 \end{aligned}