Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

# Rectangle calculator

Input two rectangle dimensions (length, width, diagonal, area and perimeter), and the calculator will calculate the unknown property. The calculator accepts all types of input values, including fractions and square roots, and provides step-by-step explanation.

## Find the perimeter $P$ of a rectangle if side $a = \frac{ 7 }{ 2 }$ and side $b = \frac{ 5 }{ 2 }$.

solution

$$P = 12$$

explanation

To find perimeter $P$ use formula:

$$P = 2 a + 2 b$$

After substituting $a = \frac{ 7 }{ 2 }$ and $b = \frac{ 5 }{ 2 }$ we have:

$$P = 2 \cdot \frac{ 7 }{ 2 } + 2 \cdot \frac{ 5 }{ 2 }$$ $$P = 7 + 5$$ $$P = 12$$

## Report an Error !

Script name : rectangle-calculator

Form values: 5 , 7/2 , 5/2 , g , Find the perimeter P of a rectangle if side a = 7/2 and side b = 5/2 . , , ,

Comment (optional)

Rectangle Calculator
input two rectangle properties and select the missing one
help ↓↓ examples ↓↓ tutorial ↓↓
Select what to compute:
input two dimensions of a rectangle
calculator works with decimals, fractions and square roots ( to input $\color{blue}{\sqrt{2}}$ type $\color{blue}{\text{r2}}$)
side
$a$ =

side
$b$ =
diagonal
$d$ =

area
$A$ =
perimeter
$P$ =

working...
Rectangle formulas
 $$A = ab$$ area
 $$P = 2a + 2b$$ perimeter
 $$d^2 = a^2 + b^2$$ diagonal
EXAMPLE PROBLEMS
example 1:ex 1:
Find the area of the rectangle whose sides are $a = \dfrac{5}{3}$ and $b = \dfrac{3}{2}$.
example 2:ex 2:
If the diagonal is 9 cm and one side is 5 cm, find the area of a rectangle.
example 3:ex 3:
A rectangle has an area of 18 cm2 and a side length of 16/5cm. Determine the perimeter.
Find more worked-out examples in the database of solved problems..
Search our database with more than 250 calculators
TUTORIAL

## Rectangle calculations

This calculator uses the following formulas to find the missing values of a rectangle:

 Area: $$A = a \cdot b$$ Perimeter: $$P = 2a + 2b$$ Diagonal: $$d^2 = a^2 + b^2$$

### Example 01 :

What is the area of a rectangle with a base of 12 cm and a height of 3/2 cm?

### Solution:

base $a = 6$

height $b = \dfrac{9}{2}$

$$\color{blue}{A = a \cdot b} = 6 \cdot \frac{9}{2} = \frac{54}{2} = 27$$

### Example 02 :

What is the perimeter of a rectangle with a length of 7/2cm and a width of 5/2cm?

### Solution:

length $a = \dfrac{7}{2} \, cm$

width $b = \dfrac{5}{2} \, cm$

$$\color{blue}{P = 2a + 2b} = 2 \cdot \frac{7}{2} + 2 \cdot \dfrac{5}{2} = 7 + 5 = 12$$

### Example 03 :

The area of a rectangle is 42 cm2. Find its perimeter if the width is 7cm.

### Solution:

We'll need two steps to solve this one:

Step 1: find length ( b ):

width $a = 7 cm$

area: $A = 42 cm$

\begin{aligned} A & = a \cdot b \\[ 1 em] 42 & = 7 \cdot b \\[ 1 em] b & = \frac{42}{7}\\[ 1 em] b & = 6 \\[ 1 em] \end{aligned}

Step 2: find perimeter ( P )

width $a = 7 cm$

length $b = 6 cm$

\begin{aligned} P & = 2a + 2b \\[ 1 em] P & = 2 \cdot 7 + 2 \cdot 6 \\[ 1 em] P & = 14 + 12 \\[ 1 em] P & = 28 \, cm^2 \\[ 1 em] \end{aligned}

### Example 04 :

What is the diagonal of a rectangle if the perimeter is P = 11/2 cm and a width is a = 3/2 cm ?

### Solution:

Step 1: find length ( b ):

width $a = \dfrac{3}{2} cm$

perimeter: $P = \dfrac{11}{2} cm$

\begin{aligned} P & = 2a + 2b \\[ 1 em] \frac{11}{2} & = 2 \cdot \frac{3}{2} + 2b \\[ 1 em] \frac{11}{2} & = 3 + 2b \\[ 1 em] 2b &= \frac{11}{2} - 3 \\[1 em] 2b &= \frac{5}{2} \\[1 em] b &= \frac{5}{4} \end{aligned}

Step 2: find diagonal ( d )

width $a = \dfrac{3}{2} cm$

length $b = \dfrac{5}{4} cm$

\begin{aligned} d^2 & = a^2 + b^2 \\[ 1 em] d^2 & = \left( \frac{3}{2} \right)^2 + \left( \frac{5}{4} \right)^2 \\[ 1 em] d^2 & = \frac{9}{4} + \frac{25}{16} \\[ 1 em] d^2 & = \frac{61}{16} \\[ 1 em] d & = \frac{\sqrt{61}}{4} \end{aligned}
Search our database with more than 250 calculators
439 095 954 solved problems