Rectangle calculator

problem

Find diagonal $ d $ of a rectangle if side $a = \frac{ 3 }{ 2 }$ and perimeter $P = \frac{ 11 }{ 2 }$.

solution

$$ d = \frac{\sqrt{ 61 }}{ 4 } $$

explanation

STEP 1: find side $ b $

To find side $ b $ use formula:

$$ P = 2 a + 2 b $$

After substituting $ P = \frac{ 11 }{ 2 } $ and $ a = \frac{ 3 }{ 2 } $ we have:

$$ \frac{ 11 }{ 2 } = 2 \cdot \frac{ 3 }{ 2 } + 2 b $$ $$ \frac{ 11 }{ 2 } = 3 + 2 b $$ $$ 2 b = \frac{ 11 }{ 2 } - 3 $$ $$ 2 b = \frac{ 5 }{ 2 } $$ $$ b = \dfrac{ \frac{ 5 }{ 2 } }{ 2 } $$ $$ b = \frac{ 5 }{ 4 } $$

STEP 2: find diagonal $ d $

To find diagonal $ d $ use Pythagorean Theorem:

$$ a^2 + b^2 = d^2 $$

After substituting $ a = \frac{ 3 }{ 2 } $ and $ b = \frac{ 5 }{ 4 } $ we have:

$$ \left(\frac{ 3 }{ 2 }\right)^2 + \left(\frac{ 5 }{ 4 }\right)^2 = d^2 $$ $$ \frac{ 9 }{ 4 } + \frac{ 25 }{ 16 } = d^2 $$ $$ d^2 = \frac{ 61 }{ 16 } $$ $$ d = \sqrt{ \frac{ 61 }{ 16 } } $$$$ d = \frac{\sqrt{ 61 }}{ 4 } $$

Report an Error !

Script name : rectangle-calculator

Form values: 3 , 3/2 , 11/2 , g , Find diagonal d of a rectangle if side a = 3/2 and perimeter P = 11/2 . , , ,

Comment (optional)

Share Result

Or just copy and paste the link wherever you need it.

Select the missing value after entering two rectangle elements (length, width, diagonal, area, or perimeter). The calculator will provide you a step-by-step solution to the given problem.
show help ↓↓ examples ↓↓ tutorial ↓↓
Input what to find:
Input any two known values of a rectangle
calculator works with decimals, fractions and square roots ( to input $ \color{blue}{\sqrt{2}} $ type $ \color{blue}{\text{r2}} $)
$ a $
=
$ b $
=
$ d $
=
AreaA
=
PerimP
=
 
 
 
working...
EXAMPLE PROBLEMS
example 1:ex 1:
Find the area of the rectangle whose sides are $ a = \dfrac{5}{3} $ and $ b = \dfrac{3}{2} $.
example 2:ex 2:
If the diagonal is 9 cm and one side is 5 cm, find the area of a rectangle.
example 3:ex 3:
A rectangle has an area of 18 cm2 and a side length of 16/5cm. Determine the perimeter.
Search our database of more than 200 calculators
TUTORIAL

Rectangle calculations

This calculator uses the following formulas to find the missing values of a rectangle:

Area: $$ A = a \cdot b $$ rectangle
Perimeter: $$ P = 2a + 2b $$
Diagonal: $$ d^2 = a^2 + b^2 $$

Example 01 :

What is the area of a rectangle with a base of 12 cm and a height of 3/2 cm?

Solution:

base $ a = 6 $

height $ b = \dfrac{9}{2} $

$$ \color{blue}{A = a \cdot b} = 6 \cdot \frac{9}{2} = \frac{54}{2} = 27 $$

Example 02 :

What is the perimeter of a rectangle with a length of 7/2cm and a width of 5/2cm?

Solution:

length $ a = \dfrac{7}{2} \, cm $

width $ b = \dfrac{5}{2} \, cm $

$$ \color{blue}{P = 2a + 2b} = 2 \cdot \frac{7}{2} + 2 \cdot \dfrac{5}{2} = 7 + 5 = 12 $$

Example 03 :

The area of a rectangle is 42 cm2. Find its perimeter if the width is 7cm.

Solution:

We'll need two steps to solve this one:

Step 1: find length ( b ):

width $ a = 7 cm $

area: $ A = 42 cm $

$$ \begin{aligned} A & = a \cdot b \\[ 1 em] 42 & = 7 \cdot b \\[ 1 em] b & = \frac{42}{7}\\[ 1 em] b & = 6 \\[ 1 em] \end{aligned} $$

Step 2: find perimeter ( P )

width $ a = 7 cm $

length $ b = 6 cm $

$$ \begin{aligned} P & = 2a + 2b \\[ 1 em] P & = 2 \cdot 7 + 2 \cdot 6 \\[ 1 em] P & = 14 + 12 \\[ 1 em] P & = 28 \, cm^2 \\[ 1 em] \end{aligned} $$

Example 04 :

What is the diagonal of a rectangle if the perimeter is P = 11/2 cm and a width is a = 3/2 cm ?

Solution:

Step 1: find length ( b ):

width $ a = \dfrac{3}{2} cm $

perimeter: $ P = \dfrac{11}{2} cm $

$$ \begin{aligned} P & = 2a + 2b \\[ 1 em] \frac{11}{2} & = 2 \cdot \frac{3}{2} + 2b \\[ 1 em] \frac{11}{2} & = 3 + 2b \\[ 1 em] 2b &= \frac{11}{2} - 3 \\[1 em] 2b &= \frac{5}{2} \\[1 em] b &= \frac{5}{4} \end{aligned} $$

Step 2: find diagonal ( d )

width $ a = \dfrac{3}{2} cm $

length $ b = \dfrac{5}{4} cm $

$$ \begin{aligned} d^2 & = a^2 + b^2 \\[ 1 em] d^2 & = \left( \frac{3}{2} \right)^2 + \left( \frac{5}{4} \right)^2 \\[ 1 em] d^2 & = \frac{9}{4} + \frac{25}{16} \\[ 1 em] d^2 & = \frac{61}{16} \\[ 1 em] d & = \frac{\sqrt{61}}{4} \end{aligned} $$
Search our database of more than 200 calculators

Was this calculator helpful?

Yes No
436 090 476 solved problems