Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

# Equilateral Triangle Calculator

Input one value for an equilateral triangle, and the calculator will find the five unknown elements. The calculator will provide a step-by-step explanation on how to calculate missing elements.

## Find the side $a$ of an equilateral triangle if altitude $h = 15$.

solution

$$a = 10 \sqrt{ 3 }$$

explanation

To find side $a$ use formula:

$$h = \dfrac{ \sqrt{ 3 } \cdot a }{ 2 }$$

After substituting $h = 15$ we have:

$$15 = \dfrac{ \sqrt{ 3 } \cdot a }{ 2 }$$ $$\sqrt{ 3 } \cdot a = 15 \cdot 2$$ $$\sqrt{ 3 } \cdot a = 30$$ $$a = \dfrac{ 30 }{ \sqrt{ 3 } }$$ $$a = 10 \sqrt{ 3 }$$

## Report an Error !

Script name : equilateral-triangle-calculator

Form values: 1 , 15 , g , Find the side a of an equilateral triangle if altitude h = 15. , , , , ,

Comment (optional)

Input the side, perimeter, area, circumcircle radius or altitude of an equilateral triangle, then choose a missing value.
help ↓↓ examples ↓↓ tutorial ↓↓
Solve for
Provide any value for an equilateral triangle.
Calculator works with decimals, fractions and square roots (to input $\color{blue}{\sqrt{2}}$ type $\color{blue}{\text{r2}}$)
side
a =

height
h =
perimeter
P =

area
A =
R =

r =
working...
Equilateral triangle formulas
 $$A = \frac{3 \, a^2 \sqrt{3}}{4}$$ area
 $$h = \frac{a \sqrt{3}}{2}$$ height
 $$r = \frac{a \sqrt{3}}{6}$$ incircle radius
 $$R = \frac{a \sqrt{3}}{3}$$ circumcircle radius
EXAMPLES
example 1:ex 1:
What is the area of an equilateral triangle of perimeter $P = 6\sqrt{2}$.
example 2:ex 2:
What is the perimeter of an equilateral triangle if its height is $\dfrac{20}{3} cm^2$?
example 3:ex 3:
If base of an equilateral triangle 50 inches long, what is the triangle's height?
example 4:ex 4:
$\triangle ABC$ is an equilateral triangle with area A = 24. Find the perimeter.
Find more worked-out examples in the database of solved problems..
TUTORIAL

## Equilateral triangle calculations

This calculator uses the following formulas to find the missing values of a triangle.

 Perimeter: $$P = 3 \cdot a$$ Area: $$A = \frac{a^2 \sqrt{3}}{4}$$ Height: $$h = \frac{a \sqrt{3}}{2}$$ Circumcircle radius: $$R = \frac{a \sqrt{3}}{3}$$ Incircle radius: $$r = \frac{a \sqrt{3}}{6}$$

### Example 01 :

What is the area of an equilateral triangle whose side is $12 cm$.

### Solution:

In this example we have $a = 12$.

To find the area we will use formula $A = \dfrac{a^2 \sqrt{3}}{4}$

\begin{aligned} A & = \frac{a^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{12^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{144 \sqrt{3}}{4} \\[ 1 em] A & = 36 \sqrt{3} \end{aligned}

### Example 02 :

What is the side of an equilateral triangle whose height is 15 cm?

### Solution:

In this example we have $h = 15$.

To find height we will use formula $h = \dfrac{a \sqrt{3}}{2}$

\begin{aligned} h & = \frac{a \sqrt{3}}{2} \\[ 1 em] 15 & = \frac{a \sqrt{3}}{2} \\[ 1 em] a \sqrt{3} & = 15 \cdot 2 \\[ 1 em] a \sqrt{3} & = 30 \\[1 em] a & = \frac{30}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\[1 em] a & = \frac{30 \sqrt{3}}{3} \\[ 1 em] a & = 10 \sqrt{3} \approx 17.3 \end{aligned}
Search our database with more than 250 calculators
440 432 770 solved problems