Equilateral Triangle Calculator

problem

Find side $ a $ of an equilateral triangle if altitude $h = 15$.

solution

$$ a = 10 \sqrt{ 3 } $$

explanation

To find side $ a $ use formula:

$$ h = \dfrac{ \sqrt{ 3 } \cdot a }{ 2 } $$

After substituting $ h = 15 $ we have:

$$ 15 = \dfrac{ \sqrt{ 3 } \cdot a }{ 2 } $$ $$ \sqrt{ 3 } \cdot a = 15 \cdot 2 $$ $$ \sqrt{ 3 } \cdot a = 30 $$ $$ a = \dfrac{ 30 }{ \sqrt{ 3 } } $$ $$ a = 10 \sqrt{ 3 } $$

Report an Error !

Script name : equilateral-triangle-calculator

Form values: 1 , 15 , g , Find side a of an equilateral triangle if altitude h = 15. , , , , ,

Comment (optional)

Share Result

Or just copy and paste the link wherever you need it.

Input the side, perimeter, area, circumcircle radius or altitude of an equilateral triangle , then choose a missing value.
The calculator will display step-by-step explanation on how to find the missing value.
show help ↓↓ examples ↓↓ tutorial ↓↓
The missing value:
Provide any value of an equilateral triangle
calculator works with decimals, fractions and square roots (to input $ \color{blue}{\sqrt{2}} $ type $\color{blue}{\text{r2}} $)
side
a =
 
height
h =
perimeter
P =
 
area
A =
circumcircle
radius
R =
 
incircle
radius
r =
working...
EXAMPLES
example 1:ex 1:
What is the area of an equilateral triangle of perimeter $P = 6\sqrt{2}$.
example 2:ex 2:
What is the perimeter of an equilateral triangle if its height is $\dfrac{20}{3} cm^2$?
example 3:ex 3:
If base of an equilateral triangle $50$ inches long, what is the triangle's height?
example 4:ex 4:
$\triangle ABC$ is an equilateral triangle with area $ 24 $. Find the perimeter.
TUTORIAL

Equilateral triangle calculations

This calculator uses the following formulas to find the missing values of a triangle.

Perimeter: $$ P = 3 \cdot a $$ equilateral triangle
Area: $$ A = \frac{a^2 \sqrt{3}}{4} $$
Height: $$ h = \frac{a \sqrt{3}}{2} $$
Circumcircle radius: $$ R = \frac{a \sqrt{3}}{3} $$
Incircle radius: $$ r = \frac{a \sqrt{3}}{6} $$

Example 01 :

What is the area of an equilateral triangle whose side is $ 12 cm $.

Solution:

In this example we have $ a = 12 $.

To find the area we will use formula $A = \dfrac{a^2 \sqrt{3}}{4} $

$$ \begin{aligned} A & = \frac{a^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{12^2 \sqrt{3}}{4} \\[ 1 em] A & = \frac{144 \sqrt{3}}{4} \\[ 1 em] A & = 36 \sqrt{3} \end{aligned} $$

Example 02 :

What is the side of an equilateral triangle whose height is 15 cm?

Solution:

In this example we have $ h = 15 $.

To find height we will use formula $h = \dfrac{a \sqrt{3}}{2} $

$$ \begin{aligned} h & = \frac{a \sqrt{3}}{2} \\[ 1 em] 15 & = \frac{a \sqrt{3}}{2} \\[ 1 em] a \sqrt{3} & = 15 \cdot 2 \\[ 1 em] a \sqrt{3} & = 30 \\[1 em] a & = \frac{30}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\[1 em] a & = \frac{30 \sqrt{3}}{3} \\[ 1 em] a & = 10 \sqrt{3} \approx 17.3 \end{aligned} $$
Search our database of more than 200 calculators

Was this calculator helpful?

Yes No
436 090 067 solved problems