Triangle in 2D
(the database of solved problems)
All the problems and solutions shown below were generated using the Triangle Calculator.
| ID |
Problem |
Count |
| 1 | Find the circumcenter of triangle $A=\left(1,~5\right)$ $B=\left(3,~3\right)$ $C=\left(3,~5\right)$. | 336 |
| 2 | Find the circumcenter of triangle $A=\left(1,~3\right)$ $B=\left(-2,~-2\right)$ $C=\left(4,~-2\right)$. | 250 |
| 3 | Find the orthocenter of triangle $A=\left(-2,~5\right)$ $B=\left(5,~1\right)$ $C=\left(-4,~-5\right)$. | 238 |
| 4 | Find the medians of triangle $A=\left(4,~7\right)$ $B=\left(6,~-1\right)$ $C=\left(-2,~3\right)$. | 177 |
| 5 | Find the medians of triangle $A=\left(1,~7\right)$ $B=\left(2,~3\right)$ $C=\left(6,~7\right)$. | 150 |
| 6 | Find the area of triangle $A=\left(2,~1\right)$ $B=\left(3,~-2\right)$ $C=\left(-4,~-1\right)$. | 144 |
| 7 | Find the orthocenter of triangle $A=\left(-2,~1\right)$ $B=\left(2,~-1\right)$ $C=\left(0,~4\right)$. | 122 |
| 8 | Find the orthocenter of triangle $A=\left(0,~0\right)$ $B=\left(0,~60\right)$ $C=\left(96,~48\right)$. | 103 |
| 9 | Find the altitudes of triangle $A=\left(1,~-2\right)$ $B=\left(-2,~1\right)$ $C=\left(2,~3\right)$. | 98 |
| 10 | Find the area of triangle $A=\left(0,~8\right)$ $B=\left(16,~4\right)$ $C=\left(0,~0\right)$. | 94 |
| 11 | Find the area of triangle $A=\left(0,~-8\right)$ $B=\left(-2,~-3\right)$ $C=\left(8,~1\right)$. | 67 |
| 12 | Find the centroid of triangle $A=\left(-1,~2\right)$ $B=\left(3,~4\right)$ $C=\left(1,~5\right)$. | 62 |
| 13 | Find the centroid of triangle $A=\left(4,~7\right)$ $B=\left(6,~-1\right)$ $C=\left(-2,~3\right)$. | 55 |
| 14 | Find the orthocenter of triangle $A=\left(4,~-3\right)$ $B=\left(-1,~-2\right)$ $C=\left(7,~3\right)$. | 55 |
| 15 | Find the medians of triangle $A=\left(4,~4\right)$ $B=\left(3,~0\right)$ $C=\left(-1,~-4\right)$. | 54 |
| 16 | Find the area of triangle $A=\left(-4,~2\right)$ $B=\left(0,~6\right)$ $C=\left(7,~-2\right)$. | 52 |
| 17 | Find the altitudes of triangle $A=\left(-\dfrac{ 3 }{ 2 },~0\right)$ $B=\left(\dfrac{ 3 }{ 2 },~0\right)$ $C=\left(0,~2.598\right)$. | 48 |
| 18 | Find the orthocenter of triangle $A=\left(0,~12\right)$ $B=\left(12,~6\right)$ $C=\left(0,~-16\right)$. | 48 |
| 19 | Find the area of triangle $A=\left(0,~0\right)$ $B=\left(0,~2\right)$ $C=\left(3,~4\right)$. | 47 |
| 20 | Find the altitudes of triangle $A=\left(1,~7\right)$ $B=\left(8,~11\right)$ $C=\left(11,~2\right)$. | 44 |
| 21 | Find the area of triangle $A=\left(-4,~-2\right)$ $B=\left(3,~-1\right)$ $C=\left(1,~3\right)$. | 42 |
| 22 | Find the area of triangle $A=\left(4,~4\right)$ $B=\left(-2,~3\right)$ $C=\left(-4,~-5\right)$. | 39 |
| 23 | Find the area of triangle $A=\left(-3,~5\right)$ $B=\left(3,~2\right)$ $C=\left(1,~-2\right)$. | 38 |
| 24 | Find the circumcenter of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(15,~5\right)$ $C=\left(0,~5\right)$. | 38 |
| 25 | Find the incenter of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(15,~5\right)$ $C=\left(0,~5\right)$. | 36 |
| 26 | Find the medians of triangle $\left(3,~4\right)$ $\left(-5,~2\right)$ $\left(1,~-4\right)$. | 32 |
| 27 | Find the medians of triangle $A=\left(-1,~2\right)$ $B=\left(3,~4\right)$ $C=\left(1,~5\right)$. | 31 |
| 28 | Find the medians of triangle $A=\left(-6,~-4\right)$ $B=\left(6,~5\right)$ $C=\left(10,~-2\right)$. | 26 |
| 29 | Find the incenter of triangle $\left(-7,~-13\right)$ $\left(5,~3\right)$ $\left(-7,~3\right)$. | 24 |
| 30 | Find the medians of triangle $A=\left(0,~0\right)$ $B=\left(4,~4\right)$ $C=\left(8,~-4\right)$. | 24 |
| 31 | Find the medians of triangle $A=\left(-\dfrac{ 3 }{ 2 },~0\right)$ $B=\left(\dfrac{ 3 }{ 2 },~0\right)$ $C=\left(0,~2.598\right)$. | 24 |
| 32 | Find the medians of triangle $A=\left(0,~0\right)$ $B=\left(8,~6\right)$ $C=\left(12,~0\right)$. | 22 |
| 33 | Find the area of triangle $A=\left(\dfrac{ 1 }{ 2 },~1\right)$ $B=\left(0,~4\right)$ $C=\left(-8,~0\right)$. | 22 |
| 34 | Find the centroid of triangle $A=\left(4,~0\right)$ $B=\left(2,~9\right)$ $C=\left(0,~0\right)$. | 21 |
| 35 | Find the incenter of triangle $\left(1,~-17\right)$ $\left(-5,~0\right)$ $\left(-8,~-4\right)$. | 20 |
| 36 | Find the altitudes of triangle $\left(0,~0\right)$ $\left(12,~6\right)$ $\left(18,~0\right)$. | 19 |
| 37 | Find the altitudes of triangle $A=\left(-2,~1\right)$ $B=\left(2,~-1\right)$ $C=\left(0,~4\right)$. | 19 |
| 38 | Find the orthocenter of triangle $\left(-7,~-13\right)$ $\left(5,~3\right)$ $\left(-7,~3\right)$. | 19 |
| 39 | Find the centroid of triangle $\left(0,~4\right)$ $\left(6,~-4\right)$ $\left(10,~-1\right)$. | 18 |
| 40 | Find the orthocenter of triangle $A=\left(0,~0\right)$ $B=\left(6,~3\right)$ $C=\left(8,~9\right)$. | 18 |
| 41 | Find the altitudes of triangle $\left(3,~4\right)$ $\left(-5,~2\right)$ $\left(1,~-4\right)$. | 18 |
| 42 | Find the centroid of triangle $\left(-7,~-13\right)$ $\left(5,~3\right)$ $\left(-7,~3\right)$. | 18 |
| 43 | Find the area of triangle $A=\left(-7,~4\right)$ $B=\left(-3,~7\right)$ $C=\left(-9,~9\right)$. | 18 |
| 44 | Find the altitudes of triangle $A=\left(-4,~10\right)$ $B=\left(8,~-2\right)$ $C=\left(0,~0\right)$. | 17 |
| 45 | Find the area of triangle $A=\left(2,~4\right)$ $B=\left(6,~8\right)$ $C=\left(6,~2\right)$. | 17 |
| 46 | Find the incenter of triangle $\left(0,~7\right)$ $\left(-12,~-2\right)$ $\left(0,~-2\right)$. | 17 |
| 47 | Find the circumcenter of triangle $\left(-7,~-13\right)$ $\left(5,~3\right)$ $\left(-7,~3\right)$. | 17 |
| 48 | Find the altitudes of triangle $A=\left(2,~4\right)$ $B=\left(6,~0\right)$ $C=\left(0,~0\right)$. | 16 |
| 49 | Find the medians of triangle $A=\left(2,~0\right)$ $B=\left(3,~1\right)$ $C=\left(5,~7\right)$. | 16 |
| 50 | Find the circumcenter of triangle $\left(0,~4\right)$ $\left(6,~-4\right)$ $\left(10,~-1\right)$. | 16 |