Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Rationalize denominator calculator

google play badge app store badge

This calculator removes square roots from the denominator. The calculator rationalizes denominators containing one or two radical terms. For one radical term, the calculator multiplies the numerator and denominator by the square root, for two radical terms, it uses multiplication by the conjugate method. Additionally, the calculator shows all the steps with easy-to-understand explanations.

solution

$$\frac{30}{5\sqrt{3}-3\sqrt{5}}=5\sqrt{3}+3\sqrt{5}$$

explanation

Tap the blue circles to see an explanation.

$$ \begin{aligned}\frac{30}{5\sqrt{3}-3\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{30}{5\sqrt{3}-3\sqrt{5}}\frac{5\sqrt{3}+3\sqrt{5}}{5\sqrt{3}+3\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{150\sqrt{3}+90\sqrt{5}}{75+15\sqrt{15}-15\sqrt{15}-45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{150\sqrt{3}+90\sqrt{5}}{30} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{5\sqrt{3}+3\sqrt{5}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}5\sqrt{3}+3\sqrt{5}\end{aligned} $$
Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 5 \sqrt{3} + 3 \sqrt{5}} $$.
Multiply in a numerator. $$ \color{blue}{ 30 } \cdot \left( 5 \sqrt{3} + 3 \sqrt{5}\right) = \color{blue}{30} \cdot 5 \sqrt{3}+\color{blue}{30} \cdot 3 \sqrt{5} = \\ = 150 \sqrt{3} + 90 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 5 \sqrt{3}- 3 \sqrt{5}\right) } \cdot \left( 5 \sqrt{3} + 3 \sqrt{5}\right) = \color{blue}{ 5 \sqrt{3}} \cdot 5 \sqrt{3}+\color{blue}{ 5 \sqrt{3}} \cdot 3 \sqrt{5}\color{blue}{- 3 \sqrt{5}} \cdot 5 \sqrt{3}\color{blue}{- 3 \sqrt{5}} \cdot 3 \sqrt{5} = \\ = 75 + 15 \sqrt{15}- 15 \sqrt{15}-45 $$
Simplify numerator and denominator
Divide both numerator and denominator by 30.
Remove 1 from denominator.

Report an Error!

Script name : rationalize-radical-denominator

Form values: 30 , 5r3-3r5 , \dfrac{30}{5{\cdot}\sqrt{3}-3{\cdot}\sqrt{5}} , g , Rationalize denominator 30/5√3-3√5

Comment (optional)

Plase, rate this answer so I can improve algorithm for creating a step by step explanations.
 
close
Rationalize denominator calculator
Remove all radicals from the denominator.
help ↓↓ examples ↓↓
Live Preview
2/√8
√12/√2
2/(√5-√3)
4/(√5-1)
thumb_up 3.7K thumb_down

Get Widget Code

working...
Examples
ex 1:
$$\frac{1}{\sqrt{8}}$$
ex 2:
$$\frac{\sqrt{2} + 1}{\sqrt{2} -1}$$
ex 3:
$$\frac{3\sqrt{2} - 2\sqrt{3}}{2\sqrt{3} + 3\sqrt{2}}$$
ex 4:
$$\frac{1}{\sqrt{21} + \sqrt{7} + 2\sqrt{3} + 2}$$
ex 5:
$$\frac{\sqrt{3} + \sqrt{2} + 1}{\sqrt{3} - \sqrt{2} + 1}$$
ex 6:
$$\frac{11 - \sqrt{6}}{\sqrt{6} - 6}$$
Find more worked-out examples in our database of solved problems.
Search our database with more than 300 calculators
452 861 664 solved problems