The substitution method turns an unfamiliar integral into one that can be evaluated. In other words, substitution gives a simpler integral involving the variable $u$. This lesson shows how the substitution technique works.
Let's review the five steps for integration by substitution.
Step 1: Choose a new variable $u$
Step 2: Determine the value $dx$
Step 3: Make the substitution
Step 4: Integrate resulting integral
Step 5: Return to the initial variable x
These are typical examples where the method of substitution is used.
Example 1: Solve:
$$ \int {(2x + 3)^4dx} $$Solution:
Step 1: Choose the substitution function $u$
The substitution function is $\color{blue}{u = 2x + 3}$
Step 2: Determine the value of $dx$
$$ \begin{aligned} 2x + 3 &= u \\ (2x + 3)'dx &= du \\ 2dx &= du \\ \color{red}{dx} &\color{red}{= \frac{1}{2}du} \end{aligned} $$Step 3: Do the substitution
$$ \int {\color{blue}{(2x + 3)}^4 dx} = \int {\color{blue}{u}^4} \cdot \color{red}{\frac{1}{2} \cdot du} $$Step 4: Integrate the resulting integral
$$ \int {{{(2x + 3)}^4}} dx = \int {{u^4}} \cdot \frac{1}{2} \cdot du \color{red}{=} \frac{1}{2}\int {{u^4}} du = \frac{1}{2} \cdot \frac{{{u^{4 + 1}}}}{{4 + 1}} + C = \frac{{{u^5}}}{{10}} + C $$Step 5: Return to the initial variable: $x$
$$ \frac{\color{blue}{u}^5}{10} + C = \frac{\color{blue}{(2x + 3)}^5}{10} + C $$So, the solution is: $\int (2x + 3) ^ 4 dx = \frac{(2x + 3)^5}{10} + C $
Example 2: Solve:
$$\int {\frac{15}{3 - 2x}dx}$$Solution:
Step 1: Choose a substitution function $u$
The substitution function is $\color{blue}{u = 3 - 2x}$
Step 2: Determine the value $dx$
$$ \begin{aligned} 3 - 2x &= u \\ (3 - 2x)' dx &= du \\ -2dx &= du \\ \color{red}{dx} &\color{red}{= - \frac{1}{2} du} \end{aligned} $$Step 3: Do the substitution
$$ \int {\frac{15}{\color{blue}{3 - 2x}} \color{red}{dx}} = \int {\frac{15}{\color{blue}{u}} \cdot \color{red}{\left( { - \frac{1}{2}} \right) \cdot du}} $$Step 4: Integrate resulting integral
$$ \int {\frac{15}{u} \cdot \left( { - \frac{1}{2}} \right) \cdot du = - \frac{15}{2}\int {\frac{1}{u}du = - \frac{15}{2}\ln \left| u \right|} + C} $$Step 5: Return to the initial variable: $x$
$$ - \frac{{15}}{2}\ln \left| \color{blue}{u} \right| + C = - \frac{{15}}{2}\ln \left| \color{blue}{3 - 2x} \right| + C $$The solution is: $\int {\frac{{15}}{{3 - 2x}}dx = - \frac{{15}}{2}\ln \left| {3 - 2x} \right|} + C$
Level 1
Level 2
The steps for integration by substitution in this section are the same as the steps for previous one, but make sure to choose the substitution function wisely.
Example 3: Solve:
$$ \int {x\sin ({x^2})dx} $$Solution:
$$ \text{Let} \ \ \color{blue}{u = x^2} \ \ \text{then:} \ \ du = (x^2)' dx = 2xdx \ \Rightarrow \ \color{red}{xdx = \frac{du}{2}} \\ \int {\color{red}{x} \sin (\color{blue}{x^2}) \color{red}{dx} = } \int {\sin \color{blue}{u} \cdot \color{red}{\frac{{du}}{2}}} = \frac{1}{2}\int {\sin udu = - \frac{1}{2}\cos u + C = - \frac{1}{2}\cos {x^2} + C} $$Example 4: Solve:
$$ \int {{x^2}} \sqrt {1 + {x^3}} dx $$Solution:
$$ \text{Let} \ \ \color{blue}{u = 1 + x^3} \ \ \text{then:} \ \ du = (1 + x^3)' dx = 3x^2dx \ \Rightarrow \ \color{red}{x^dx = \frac{du}{3}} \\ \int {\color{red}{x^2}} \sqrt {\color{blue}{1 + x^3}} \color{red}{dx} = \int {\color{blue}{\sqrt u} \cdot \color{red}{\frac{du}{3}} = \frac{1}{3}\int {\sqrt u du} = \\ = \frac{1}{3}\int {{u^{\frac{1}{2}}}} } du = \frac{1}{3} \cdot \frac{{{u^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} + C = \frac{1}{3} \cdot \frac{2}{3} \cdot {\color{blue}{u}^{\frac{3}{2}}} + C = \frac{2}{9} \cdot {\color{blue}{(1 + x^3)}^{\frac{3}{2}}} + C $$Example 5: Solve:
$$ \int {\frac{1}{{{x^2}{{\left( {1 + \frac{1}{x}} \right)}^2}}}} dx $$Solution:
$$ \text{Let} \ \ \color{blue}{u = 1 + \frac{1}{x}} \ \ \text{then:} \ \color{red}{du} = \left( 1 + \frac{1}{x} \right)' dx = -x^{-2} = \color{red}{- \frac{1}{x^2} dx} \\ \int {\frac{1}{{{x^2}\left( {1 + \frac{1}{x}} \right)}}} dx = - \int {\frac{\color{red}{1}}{{ \color{red}{- {x^2}}{{\left( {\color{blue}{1 + \frac{1}{x}}} \right)}^2}}}} \color{red}{dx} = - \int {\frac{1}{\color{blue}{u^2}}} \color{red}{du} = \\ = - \int {{u^{ - 2}}du = - \frac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}} + C = \color{blue}{u}^{ - 1} + C} = {\left( \color{blue}{1 + \frac{1}{x}} \right)^{ - 1}} + C = \\ = \left( \frac{x + 1}{x} \right)^{-1} + C = \frac{x}{x + 1} + C $$Level 1
Level 2