Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 851 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-3\right) $ and $ \vec{v_2} = \left(0,~9\right) $ . | 2 |
| 852 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~7\right) $ . | 2 |
| 853 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-10,~5\right) $ . | 2 |
| 854 | Find the angle between vectors $ \left(4,~3\right)$ and $\left(3,~-4\right)$. | 2 |
| 855 | Find the sum of the vectors $ \vec{v_1} = \left(26,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 36 }{ 5 },~120\right) $ . | 2 |
| 856 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~5\right) $ . | 2 |
| 857 | Find the projection of the vector $ \vec{v_1} = \left(8,~150\right) $ on the vector $ \vec{v_2} = \left(0,~0\right) $. | 2 |
| 858 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(9,~3\right) $ . | 2 |
| 859 | Find the difference of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(9,~3\right) $ . | 2 |
| 860 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-2,~8\right) $ . | 2 |
| 861 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-3\right) $ . | 2 |
| 862 | Find the difference of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-2,~8\right) $ . | 2 |
| 863 | Find the angle between vectors $ \left(6,~-3\right)$ and $\left(-2,~8\right)$. | 2 |
| 864 | Find the projection of the vector $ \vec{v_1} = \left(6,~-3\right) $ on the vector $ \vec{v_2} = \left(-2,~8\right) $. | 2 |
| 865 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(1.5,~0\right) $ . | 2 |
| 866 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~-4\right) $ . | 2 |
| 867 | Find the angle between vectors $ \left(4,~0\right)$ and $\left(2,~5\right)$. | 2 |
| 868 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-2\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
| 869 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~12\right) $ and $ \vec{v_2} = \left(6,~9\right) $ . | 2 |
| 870 | Find the sum of the vectors $ \vec{v_1} = \left(10,~-9\right) $ and $ \vec{v_2} = \left(-1,~-4\right) $ . | 2 |
| 871 | Find the difference of the vectors $ \vec{v_1} = \left(48,~-16\right) $ and $ \vec{v_2} = \left(27,~-8\right) $ . | 2 |
| 872 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~8\right) $ and $ \vec{v_2} = \left(\dfrac{ 22 }{ 5 },~-\dfrac{ 23 }{ 5 }\right) $ . | 2 |
| 873 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-60\right) $ . | 2 |
| 874 | Find the angle between vectors $ \left(3,~-2,~4\right)$ and $\left(1,~-1,~5\right)$. | 2 |
| 875 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 19 }{ 100 },~\dfrac{ 81 }{ 100 }\right) $ . | 2 |
| 876 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-9\right) $ . | 2 |
| 877 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~-4\right) $ . | 2 |
| 878 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~4\right) $ . | 2 |
| 879 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-1\right) $ . | 2 |
| 880 | Find the sum of the vectors $ \vec{v_1} = \left(2,~7\right) $ and $ \vec{v_2} = \left(8,~0\right) $ . | 2 |
| 881 | Find the difference of the vectors $ \vec{v_1} = \left(4,~14\right) $ and $ \vec{v_2} = \left(24,~0\right) $ . | 2 |
| 882 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 883 | Find the difference of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 2 |
| 884 | Find the difference of the vectors $ \vec{v_1} = \left(9,~6\right) $ and $ \vec{v_2} = \left(8,~16\right) $ . | 2 |
| 885 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 886 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(7,~-2\right) $ . | 2 |
| 887 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-5\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
| 888 | Find the angle between vectors $ \left(-1,~2\right)$ and $\left(1,~4\right)$. | 2 |
| 889 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~2\right) $ . | 2 |
| 890 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-8\right) $ and $ \vec{v_2} = \left(-5,~-3\right) $ . | 2 |
| 891 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-3\right) $ . | 2 |
| 892 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 2 |
| 893 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 2 |
| 894 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(6,~2\right) $ . | 2 |
| 895 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-1\right) $ and $ \vec{v_2} = \left(-5,~2\right) $ . | 2 |
| 896 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~6\right) $ . | 2 |
| 897 | Find the difference of the vectors $ \vec{v_1} = \left(30,~24\right) $ and $ \vec{v_2} = \left(-54,~-18\right) $ . | 2 |
| 898 | Find the difference of the vectors $ \vec{v_1} = \left(30,~24\right) $ and $ \vec{v_2} = \left(54,~18\right) $ . | 2 |
| 899 | Find the difference of the vectors $ \vec{v_1} = \left(3,~7\right) $ and $ \vec{v_2} = \left(9,~2\right) $ . | 2 |
| 900 | Find the difference of the vectors $ \vec{v_1} = \left(13,~7\right) $ and $ \vec{v_2} = \left(9,~2\right) $ . | 2 |