Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 6551 | Find the projection of the vector $ \vec{v_1} = \left(-3,~6\right) $ on the vector $ \vec{v_2} = \left(4,~8\right) $. | 1 |
| 6552 | Determine whether the vectors $ \vec{v_1} = \left(-3,~6\right) $ and $ \vec{v_2} = \left(4,~8\right) $ are linearly independent or dependent. | 1 |
| 6553 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~\dfrac{ 5 }{ 2 },~-9\right) $ . | 1 |
| 6554 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-1,~7\right) $ and $ \vec{v_2} = \left(1,~-8,~1\right) $ . | 1 |
| 6555 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~9,~-3\right) $ and $ \vec{v_2} = \left(3,~-1,~6\right) $ . | 1 |
| 6556 | Find the angle between vectors $ \left(-2,~5,~0\right)$ and $\left(1,~4,~-7\right)$. | 1 |
| 6557 | Find the angle between vectors $ \left(0,~3,~-20\right)$ and $\left(8,~0,~-7\right)$. | 1 |
| 6558 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~18\right) $ . | 1 |
| 6559 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5 \sqrt{ 2 },~-3\right) $ and $ \vec{v_2} = \left(17,~-26\right) $ . | 1 |
| 6560 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5 \sqrt{ 2 },~-3\right) $ . | 1 |