Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 901 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-15,~-8\right) $ . | 2 |
| 902 | Find the angle between vectors $ \left(-15,~-8\right)$ and $\left(-1,~9\right)$. | 2 |
| 903 | Find the angle between vectors $ \left(3,~-2\right)$ and $\left(-1,~5\right)$. | 2 |
| 904 | Find the projection of the vector $ \vec{v_1} = \left(4,~0\right) $ on the vector $ \vec{v_2} = \left(5,~-2\right) $. | 2 |
| 905 | Find the projection of the vector $ \vec{v_1} = \left(4,~-4\right) $ on the vector $ \vec{v_2} = \left(5,~-4\right) $. | 2 |
| 906 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 7 }{ 10 },~\dfrac{ 3 }{ 10 }\right) $ . | 2 |
| 907 | Find the angle between vectors $ \left(7,~5\right)$ and $\left(9,~0\right)$. | 2 |
| 908 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-6\right) $ . | 2 |
| 909 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-6\right) $ . | 2 |
| 910 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-4\right) $ and $ \vec{v_2} = \left(5,~1\right) $ . | 2 |
| 911 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-3\right) $ . | 2 |
| 912 | Find the projection of the vector $ \vec{v_1} = \left(-1,~3\right) $ on the vector $ \vec{v_2} = \left(4,~4\right) $. | 2 |
| 913 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~0\right) $ and $ \vec{v_2} = \left(-4,~-5\right) $ . | 2 |
| 914 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~0\right) $ and $ \vec{v_2} = \left(-4,~-5\right) $ . | 2 |
| 915 | Find the sum of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
| 916 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-3\right) $ and $ \vec{v_2} = \left(24,~6\right) $ . | 2 |
| 917 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(1,~2\right)$. | 2 |
| 918 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 2 |
| 919 | Determine whether the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 2 },~2\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 2 },~-7\right) $ are linearly independent or dependent. | 2 |
| 920 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-8\right) $ . | 2 |
| 921 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\dfrac{ 4 }{ 3 },~\dfrac{ 5 }{ 2 }\right) $ and $ \vec{v_2} = \left(16,~-30\right) $ . | 2 |
| 922 | Find the angle between vectors $ \left(-\dfrac{ 4 }{ 3 },~\dfrac{ 5 }{ 2 }\right)$ and $\left(16,~-30\right)$. | 2 |
| 923 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-6\right) $ . | 2 |
| 924 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-9,~-2\right) $ . | 2 |
| 925 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(6,~8\right) $ . | 2 |
| 926 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~0\right) $ . | 2 |
| 927 | Find the angle between vectors $ \left(-5,~9\right)$ and $\left(7,~-1\right)$. | 2 |
| 928 | Find the angle between vectors $ \left(2,~5\right)$ and $\left(-3,~4\right)$. | 2 |
| 929 | Find the angle between vectors $ \left(8,~4\right)$ and $\left(-2,~4\right)$. | 2 |
| 930 | Find the angle between vectors $ \left(6,~-8\right)$ and $\left(-1,~8\right)$. | 2 |
| 931 | Find the angle between vectors $ \left(-2,~-3\right)$ and $\left(-2,~2\right)$. | 2 |
| 932 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~-12\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~0\right) $ . | 2 |
| 933 | Find the sum of the vectors $ \vec{v_1} = \left(7,~9\right) $ and $ \vec{v_2} = \left(4,~6\right) $ . | 2 |
| 934 | Find the projection of the vector $ \vec{v_1} = \left(7,~7\right) $ on the vector $ \vec{v_2} = \left(-8,~5\right) $. | 2 |
| 935 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~-1,~1\right) $ and $ \vec{v_2} = \left(10,~-12,~5\right) $ . | 2 |
| 936 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~-1,~1\right) $ and $ \vec{v_2} = \left(6,~-4,~3\right) $ . | 2 |
| 937 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~-1,~1\right) $ and $ \vec{v_2} = \left(6,~-8,~3\right) $ . | 2 |
| 938 | Find the angle between vectors $ \left(-4,~2,~-5\right)$ and $\left(1,~1,~3\right)$. | 2 |
| 939 | Find the sum of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(8,~0\right) $ . | 2 |
| 940 | Find the difference of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(8,~0\right) $ . | 2 |
| 941 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(1,~0\right) $ . | 2 |
| 942 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~8\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
| 943 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~0\right) $ . | 2 |
| 944 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-2,~5\right) $ . | 2 |
| 945 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~7\right) $ . | 2 |
| 946 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~7\right) $ and $ \vec{v_2} = \left(-8,~1\right) $ . | 2 |
| 947 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~2\right) $ . | 2 |
| 948 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(1,~6\right) $ . | 2 |
| 949 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~8\right) $ and $ \vec{v_2} = \left(5,~-5\right) $ . | 2 |
| 950 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right) $ on the vector $ \vec{v_2} = \left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right) $. | 2 |