Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 801 | Find the projection of the vector $ \vec{v_1} = \left(-5,~2,~0\right) $ on the vector $ \vec{v_2} = \left(-1,~8,~-4\right) $. | 2 |
| 802 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~9,~9\right) $ and $ \vec{v_2} = \left(9,~9,~9\right) $ . | 2 |
| 803 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
| 804 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-4\right) $ . | 2 |
| 805 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ . | 2 |
| 806 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 9 }{ 41 },~\dfrac{ 40 }{ 41 }\right) $ . | 2 |
| 807 | Find the angle between vectors $ \left(-1,~6\right)$ and $\left(2,~7\right)$. | 2 |
| 808 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-0.3846,~0.9231\right) $ . | 2 |
| 809 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0.8,~0.2\right) $ . | 2 |
| 810 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ . | 2 |
| 811 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~2\right) $ . | 2 |
| 812 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(-2,~7\right) $ . | 2 |
| 813 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~\dfrac{ 1 }{ 2 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
| 814 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 8 }{ 9 },~-\dfrac{ 40 }{ 9 }\right) $ and $ \vec{v_2} = \left(6,~56\right) $ . | 2 |
| 815 | Find the projection of the vector $ \vec{v_1} = \left(2,~-5\right) $ on the vector $ \vec{v_2} = \left(-6,~-4\right) $. | 2 |
| 816 | Find the angle between vectors $ \left(3,~5\right)$ and $\left(0,~-4\right)$. | 2 |
| 817 | Find the projection of the vector $ \vec{v_1} = \left(3,~5\right) $ on the vector $ \vec{v_2} = \left(0,~-4\right) $. | 2 |
| 818 | Find the angle between vectors $ \left(\dfrac{ 8 }{ 3 },~\dfrac{ 8 }{ 3 }\right)$ and $\left(7,~-7\right)$. | 2 |
| 819 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 8 }{ 3 },~\dfrac{ 8 }{ 3 }\right) $ and $ \vec{v_2} = \left(7,~-7\right) $ . | 2 |
| 820 | Find the angle between vectors $ \left(-\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right)$ and $\left(\dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right)$. | 2 |
| 821 | Find the projection of the vector $ \vec{v_1} = \left(-\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right) $ on the vector $ \vec{v_2} = \left(\dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right) $. | 2 |
| 822 | Find the angle between vectors $ \left(5,~-2\right)$ and $\left(-7,~-3\right)$. | 2 |
| 823 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-3\right) $ . | 2 |
| 824 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~2\right) $ . | 2 |
| 825 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-2\right) $ . | 2 |
| 826 | Find the difference of the vectors $ \vec{v_1} = \left(3,~9\right) $ and $ \vec{v_2} = \left(-6,~-7\right) $ . | 2 |
| 827 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
| 828 | Find the difference of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
| 829 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 4 }{ 3 },~-6\right) $ on the vector $ \vec{v_2} = \left(9,~-\dfrac{ 3 }{ 2 }\right) $. | 2 |
| 830 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~-3\right) $ and $ \vec{v_2} = \left(4,~-5,~6\right) $ . | 2 |
| 831 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~1\right) $ and $ \vec{v_2} = \left(2,~9\right) $ . | 2 |
| 832 | Find the angle between vectors $ \left(7,~1\right)$ and $\left(2,~9\right)$. | 2 |
| 833 | Find the sum of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 2 |
| 834 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~-4\right) $ and $ \vec{v_2} = \left(4,~-5,~6\right) $ . | 2 |
| 835 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~13\right) $ . | 2 |
| 836 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~10\right) $ . | 2 |
| 837 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-5\right) $ . | 2 |
| 838 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~10\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
| 839 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 840 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~10\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
| 841 | Find the angle between vectors $ \left(-3,~10\right)$ and $\left(5,~7\right)$. | 2 |
| 842 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~-41\right) $ . | 2 |
| 843 | Find the sum of the vectors $ \vec{v_1} = \left(15,~-41\right) $ and $ \vec{v_2} = \left(29,~37\right) $ . | 2 |
| 844 | Find the projection of the vector $ \vec{v_1} = \left(2345,~2234\right) $ on the vector $ \vec{v_2} = \left(4721,~4576\right) $. | 2 |
| 845 | Find the sum of the vectors $ \vec{v_1} = \left(9,~8\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
| 846 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-7\right) $ and $ \vec{v_2} = \left(-11,~-4\right) $ . | 2 |
| 847 | Find the angle between vectors $ \left(4,~-5\right)$ and $\left(3,~7\right)$. | 2 |
| 848 | Find the magnitude of the vector $ \| \vec{v} \| = \left(80,~28\right) $ . | 2 |
| 849 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~10\right) $ . | 2 |
| 850 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |