Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 751 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~5\right) $ and $ \vec{v_2} = \left(1,~-2\right) $ . | 2 |
| 752 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 753 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-1,~3\right) $ . | 2 |
| 754 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(-5,~-4\right)$. | 2 |
| 755 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~8\right) $ and $ \vec{v_2} = \left(-8,~-2\right) $ . | 2 |
| 756 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(\sqrt{ 3 },~3\right) $ . | 2 |
| 757 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-15,~-20\right) $ . | 2 |
| 758 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 2 |
| 759 | Determine whether the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(-1,~0\right) $ are linearly independent or dependent. | 2 |
| 760 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
| 761 | Find the difference of the vectors $ \vec{v_1} = \left(-\dfrac{ 183 }{ 10 },~\dfrac{ 21353 }{ 1000 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 60743 }{ 1000 },~\dfrac{ 1194 }{ 25 }\right) $ . | 2 |
| 762 | Find the sum of the vectors $ \vec{v_1} = \left(8,~8\right) $ and $ \vec{v_2} = \left(-3,~1\right) $ . | 2 |
| 763 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~7,~0\right) $ . | 2 |
| 764 | Find the sum of the vectors $ \vec{v_1} = \left(8,~7,~0\right) $ and $ \vec{v_2} = \left(6,~-5,~-2\right) $ . | 2 |
| 765 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-5,~-2\right) $ . | 2 |
| 766 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(-4,~10\right)$. | 2 |
| 767 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~9\right) $ . | 2 |
| 768 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~2\right) $ and $ \vec{v_2} = \left(-4,~-6\right) $ . | 2 |
| 769 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(-4,~8\right) $ . | 2 |
| 770 | Find the magnitude of the vector $ \| \vec{v} \| = \left(184,~47\right) $ . | 2 |
| 771 | Find the sum of the vectors $ \vec{v_1} = \left(184,~47\right) $ and $ \vec{v_2} = \left(44,~44\right) $ . | 2 |
| 772 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~8\right) $ . | 2 |
| 773 | Find the projection of the vector $ \vec{v_1} = \left(1,~8\right) $ on the vector $ \vec{v_2} = \left(-3,~-4\right) $. | 2 |
| 774 | Find the angle between vectors $ \left(7,~7\right)$ and $\left(-4,~7\right)$. | 2 |
| 775 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-24,~-7\right) $ . | 2 |
| 776 | Find the angle between vectors $ \left(7,~4\right)$ and $\left(-4,~7\right)$. | 2 |
| 777 | Find the sum of the vectors $ \vec{v_1} = \left(6,~9\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 778 | Find the difference of the vectors $ \vec{v_1} = \left(6,~9\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 779 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-3\right) $ and $ \vec{v_2} = \left(-6,~8\right) $ . | 2 |
| 780 | Find the sum of the vectors $ \vec{v_1} = \left(-20,~0\right) $ and $ \vec{v_2} = \left(16,~-3\right) $ . | 2 |
| 781 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-3\right) $ and $ \vec{v_2} = \left(-9,~27\right) $ . | 2 |
| 782 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~3\right) $ and $ \vec{v_2} = \left(4,~-9\right) $ . | 2 |
| 783 | Find the angle between vectors $ \left(240,~300\right)$ and $\left(\dfrac{ 29 }{ 10 },~\dfrac{ 307 }{ 100 }\right)$. | 2 |
| 784 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~9\right) $ . | 2 |
| 785 | Find the projection of the vector $ \vec{v_1} = \left(3,~9\right) $ on the vector $ \vec{v_2} = \left(6,~-3\right) $. | 2 |
| 786 | Find the sum of the vectors $ \vec{v_1} = \left(240,~300\right) $ and $ \vec{v_2} = \left(2.9,~3.08\right) $ . | 2 |
| 787 | Find the sum of the vectors $ \vec{v_1} = \left(855,~130\right) $ and $ \vec{v_2} = \left(775,~135\right) $ . | 2 |
| 788 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-5\right) $ and $ \vec{v_2} = \left(2,~-8\right) $ . | 2 |
| 789 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-12,~-16\right) $ . | 2 |
| 790 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~-5\right) $ and $ \vec{v_2} = \left(-8,~-5\right) $ . | 2 |
| 791 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~0\right) $ and $ \vec{v_2} = \left(3,~8\right) $ . | 2 |
| 792 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~5\right) $ and $ \vec{v_2} = \left(5,~8\right) $ . | 2 |
| 793 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~5\right) $ . | 2 |
| 794 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~5\right) $ and $ \vec{v_2} = \left(5,~-8\right) $ . | 2 |
| 795 | Find the sum of the vectors $ \vec{v_1} = \left(-10,~5\right) $ and $ \vec{v_2} = \left(-9,~-10\right) $ . | 2 |
| 796 | Find the angle between vectors $ \left(0.866,~\dfrac{ 1 }{ 2 }\right)$ and $\left(-0.7071,~-0.7071\right)$. | 2 |
| 797 | Find the angle between vectors $ \left(-5,~3\right)$ and $\left(2,~6\right)$. | 2 |
| 798 | Find the difference of the vectors $ \vec{v_1} = \left(-\dfrac{ 3 }{ 8 },~\dfrac{ 7 }{ 8 }\right) $ and $ \vec{v_2} = \left(8,~22\right) $ . | 2 |
| 799 | Find the projection of the vector $ \vec{v_1} = \left(-2,~0,~-3\right) $ on the vector $ \vec{v_2} = \left(1,~-3,~-1\right) $. | 2 |
| 800 | Find the angle between vectors $ \left(-2,~0,~-3\right)$ and $\left(1,~-3,~-1\right)$. | 2 |