Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 701 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~-3\right) $ and $ \vec{v_2} = \left(7,~-3\right) $ . | 2 |
| 702 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~-3\right) $ and $ \vec{v_2} = \left(-10,~-5\right) $ . | 2 |
| 703 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~-3\right) $ and $ \vec{v_2} = \left(-7,~-3\right) $ . | 2 |
| 704 | Find the angle between vectors $ \left(5,~-1\right)$ and $\left(2,~3\right)$. | 2 |
| 705 | Find the angle between vectors $ \left(4,~-5\right)$ and $\left(8,~-1\right)$. | 2 |
| 706 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~12\right) $ . | 2 |
| 707 | Calculate the dot product of the vectors $ \vec{v_1} = \left(10,~8\right) $ and $ \vec{v_2} = \left(-10,~-9\right) $ . | 2 |
| 708 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(7,~-8\right) $ . | 2 |
| 709 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~8\right) $ and $ \vec{v_2} = \left(4,~-7\right) $ . | 2 |
| 710 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~7\right) $ . | 2 |
| 711 | Find the difference of the vectors $ \vec{v_1} = \left(7,~5\right) $ and $ \vec{v_2} = \left(-2,~-3\right) $ . | 2 |
| 712 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~4\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
| 713 | Find the difference of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
| 714 | Find the sum of the vectors $ \vec{v_1} = \left(7,~-3\right) $ and $ \vec{v_2} = \left(-3,~-5\right) $ . | 2 |
| 715 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~-5\right) $ and $ \vec{v_2} = \left(7,~10\right) $ . | 2 |
| 716 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~4\right) $ . | 2 |
| 717 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(-8,~5\right) $ . | 2 |
| 718 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~5\right) $ and $ \vec{v_2} = \left(-3,~9\right) $ . | 2 |
| 719 | Find the sum of the vectors $ \vec{v_1} = \left(7,~-5\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
| 720 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |
| 721 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(6,~-4\right) $ . | 2 |
| 722 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3\right) $ and $ \vec{v_2} = \left(-4,~2\right) $ . | 2 |
| 723 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~4\right) $ . | 2 |
| 724 | Find the angle between vectors $ \left(-3,~8\right)$ and $\left(4,~12\right)$. | 2 |
| 725 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(7,~17\right) $ . | 2 |
| 726 | Find the projection of the vector $ \vec{v_1} = \left(-7,~7\right) $ on the vector $ \vec{v_2} = \left(1,~22\right) $. | 2 |
| 727 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~7\right) $ and $ \vec{v_2} = \left(1,~22\right) $ . | 2 |
| 728 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(7,~17\right) $ . | 2 |
| 729 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~7\right) $ and $ \vec{v_2} = \left(1,~22\right) $ . | 2 |
| 730 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-3,~2\right) $ . | 2 |
| 731 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-4\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 2 |
| 732 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 1 }{ 4 },~\dfrac{ 3 }{ 4 }\right) $ . | 2 |
| 733 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-4\right) $ and $ \vec{v_2} = \left(-4,~8\right) $ . | 2 |
| 734 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(8,~3\right)$. | 2 |
| 735 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(8,~2\right) $ . | 2 |
| 736 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 8 }{ 17 },~\dfrac{ 8 }{ 17 }\right) $ and $ \vec{v_2} = \left(8,~2\right) $ . | 2 |
| 737 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-5\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
| 738 | Determine whether the vectors $ \vec{v_1} = \left(5,~1\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ are linearly independent or dependent. | 2 |
| 739 | Find the angle between vectors $ \left(1,~1,~1\right)$ and $\left(-2,~1,~1\right)$. | 2 |
| 740 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 1 }{ 2 },~\dfrac{ 2 }{ 7 }\right) $ and $ \vec{v_2} = \left(6,~23\right) $ . | 2 |
| 741 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(-2,~1,~1\right) $ . | 2 |
| 742 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 1 }{ 7 },~\dfrac{ 2 }{ 7 }\right) $ and $ \vec{v_2} = \left(6,~23\right) $ . | 2 |
| 743 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3,~1\right) $ and $ \vec{v_2} = \left(2,~2,~2\right) $ . | 2 |
| 744 | Find the projection of the vector $ \vec{v_1} = \left(-4,~-1,~0\right) $ on the vector $ \vec{v_2} = \left(1,~3,~-2\right) $. | 2 |
| 745 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~-1,~1\right) $ and $ \vec{v_2} = \left(0,~-2,~2\right) $ . | 2 |
| 746 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
| 747 | Find the sum of the vectors $ \vec{v_1} = \left(6,~3\right) $ and $ \vec{v_2} = \left(7,~-15\right) $ . | 2 |
| 748 | Find the angle between vectors $ \left(2,~3\right)$ and $\left(-3,~-2\right)$. | 2 |
| 749 | Find the difference of the vectors $ \vec{v_1} = \left(9,~-7\right) $ and $ \vec{v_2} = \left(8,~3\right) $ . | 2 |
| 750 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~7\right) $ and $ \vec{v_2} = \left(-6,~3\right) $ . | 2 |