Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 651 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 652 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-2,~2\right) $ . | 2 |
| 653 | Find the projection of the vector $ \vec{v_1} = \left(-2,~3,~1\right) $ on the vector $ \vec{v_2} = \left(1,~1,~2\right) $. | 2 |
| 654 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(6,~8\right)$. | 2 |
| 655 | Determine whether the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(6,~8\right) $ are linearly independent or dependent. | 2 |
| 656 | Find the angle between vectors $ \left(-2,~3,~1\right)$ and $\left(1,~1,~2\right)$. | 2 |
| 657 | Find the projection of the vector $ \vec{v_1} = \left(3,~-4\right) $ on the vector $ \vec{v_2} = \left(-18,~24\right) $. | 2 |
| 658 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-3\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 2 |
| 659 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 660 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~7,~5\right) $ and $ \vec{v_2} = \left(9,~9,~6\right) $ . | 2 |
| 661 | Find the angle between vectors $ \left(8,~7,~5\right)$ and $\left(9,~9,~6\right)$. | 2 |
| 662 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~-1\right) $ . | 2 |
| 663 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~2\right) $ . | 2 |
| 664 | Find the sum of the vectors $ \vec{v_1} = \left(0,~3\right) $ and $ \vec{v_2} = \left(3,~7\right) $ . | 2 |
| 665 | Find the sum of the vectors $ \vec{v_1} = \left(0,~-5\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 2 |
| 666 | Find the sum of the vectors $ \vec{v_1} = \left(0,~6\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
| 667 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~3,~1\right) $ . | 2 |
| 668 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~8,~0\right) $ and $ \vec{v_2} = \left(-7,~6,~0\right) $ . | 2 |
| 669 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~8,~0\right) $ and $ \vec{v_2} = \left(-2,~6,~0\right) $ . | 2 |
| 670 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
| 671 | Find the angle between vectors $ \left(1,~0\right)$ and $\left(-1,~0\right)$. | 2 |
| 672 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ . | 2 |
| 673 | Find the projection of the vector $ \vec{v_1} = \left(2,~-1\right) $ on the vector $ \vec{v_2} = \left(-1,~3\right) $. | 2 |
| 674 | Find the angle between vectors $ \left(2,~-1\right)$ and $\left(-1,~3\right)$. | 2 |
| 675 | Find the projection of the vector $ \vec{v_1} = \left(1,~1,~1\right) $ on the vector $ \vec{v_2} = \left(0,~2,~1\right) $. | 2 |
| 676 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~2\right) $ and $ \vec{v_2} = \left(1,~1,~5\right) $ . | 2 |
| 677 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(2,~1,~0\right) $ . | 2 |
| 678 | Find the difference of the vectors $ \vec{v_1} = \left(10,~-4\right) $ and $ \vec{v_2} = \left(0,~-1\right) $ . | 2 |
| 679 | Find the difference of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
| 680 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
| 681 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 7 }{ 5 }\right) $ . | 2 |
| 682 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 7 }{ 5 }\right) $ and $ \vec{v_2} = \left(4,~-4\right) $ . | 2 |
| 683 | Find the sum of the vectors $ \vec{v_1} = \left(8,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 529919 }{ 100000 },~\dfrac{ 53003 }{ 6250 }\right) $ . | 2 |
| 684 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(6,~3\right) $ . | 2 |
| 685 | Find the angle between vectors $ \left(0,~-1\right)$ and $\left(4,~1\right)$. | 2 |
| 686 | Find the angle between vectors $ \left(1,~-2\right)$ and $\left(4,~1\right)$. | 2 |
| 687 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
| 688 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
| 689 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-3,~-2\right) $ . | 2 |
| 690 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~-3\right) $ and $ \vec{v_2} = \left(2,~-3\right) $ . | 2 |
| 691 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-2\right) $ . | 2 |
| 692 | Find the sum of the vectors $ \vec{v_1} = \left(5,~8\right) $ and $ \vec{v_2} = \left(-9,~2\right) $ . | 2 |
| 693 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-5\right) $ and $ \vec{v_2} = \left(-4,~5\right) $ . | 2 |
| 694 | Calculate the cross product of the vectors $ \vec{v_1} = \left(5,~-2,~2\right) $ and $ \vec{v_2} = \left(-20,~8,~-8\right) $ . | 2 |
| 695 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-4\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
| 696 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~5\right) $ and $ \vec{v_2} = \left(-24,~40\right) $ . | 2 |
| 697 | Find the sum of the vectors $ \vec{v_1} = \left(9,~-4\right) $ and $ \vec{v_2} = \left(-10,~7\right) $ . | 2 |
| 698 | Find the difference of the vectors $ \vec{v_1} = \left(8,~-6\right) $ and $ \vec{v_2} = \left(-4,~8\right) $ . | 2 |
| 699 | Find the sum of the vectors $ \vec{v_1} = \left(-36,~20\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
| 700 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |