Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 501 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~58\right) $ and $ \vec{v_2} = \left(3,~17\right) $ . | 2 |
| 502 | Find the difference of the vectors $ \vec{v_1} = \left(10,~10\right) $ and $ \vec{v_2} = \left(21,~21\right) $ . | 2 |
| 503 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-1\right) $ . | 2 |
| 504 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-12\right) $ . | 2 |
| 505 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-8,~-4\right) $ . | 2 |
| 506 | Find the sum of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 507 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 16 }{ 5 },~\dfrac{ 24 }{ 5 }\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
| 508 | Find the difference of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 509 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(4,~1\right)$. | 2 |
| 510 | Find the difference of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
| 511 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~5\right) $ . | 2 |
| 512 | Find the angle between vectors $ \left(0,~40\right)$ and $\left(18,~0\right)$. | 2 |
| 513 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0,~7\right) $ . | 2 |
| 514 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2\right) $ . | 2 |
| 515 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~4,~16\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
| 516 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 517 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-4\right) $ . | 2 |
| 518 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-16,~-20\right) $ . | 2 |
| 519 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-20,~-25\right) $ . | 2 |
| 520 | Determine whether the vectors $ \vec{v_1} = \left(3,~-5\right) $ and $ \vec{v_2} = \left(-6,~10\right) $ are linearly independent or dependent. | 2 |
| 521 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-10,~10\right) $ . | 2 |
| 522 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~22\right) $ . | 2 |
| 523 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~-15\right) $ . | 2 |
| 524 | Find the sum of the vectors $ \vec{v_1} = \left(-9,~4\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 2 |
| 525 | Determine whether the vectors $ \vec{v_1} = \left(0,~-32\right) $ and $ \vec{v_2} = \left(6,~-185\right) $ are linearly independent or dependent. | 2 |
| 526 | Find the angle between vectors $ \left(0,~-32\right)$ and $\left(6,~-185\right)$. | 2 |
| 527 | Find the sum of the vectors $ \vec{v_1} = \left(0,~-32\right) $ and $ \vec{v_2} = \left(6,~-185\right) $ . | 2 |
| 528 | Find the difference of the vectors $ \vec{v_1} = \left(7,~9\right) $ and $ \vec{v_2} = \left(-30,~40\right) $ . | 2 |
| 529 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-6\right) $ . | 2 |
| 530 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-4\right) $ . | 2 |
| 531 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~3,~1\right) $ . | 2 |
| 532 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 23 }{ 20 },~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 41 }{ 20 },~0\right) $ . | 2 |
| 533 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~6\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 2 |
| 534 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~6\right) $ and $ \vec{v_2} = \left(2,~-1\right) $ . | 2 |
| 535 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~-3\right) $ . | 2 |
| 536 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~-8\right) $ . | 2 |
| 537 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-4\right) $ and $ \vec{v_2} = \left(7,~1\right) $ . | 2 |
| 538 | Find the difference of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-9,~28\right) $ . | 2 |
| 539 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~0,~0\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
| 540 | Find the sum of the vectors $ \vec{v_1} = \left(10,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 143 }{ 10 },~-\dfrac{ 117 }{ 50 }\right) $ . | 2 |
| 541 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(16,~12\right) $ . | 2 |
| 542 | Find the sum of the vectors $ \vec{v_1} = \left(3,~3\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
| 543 | Find the difference of the vectors $ \vec{v_1} = \left(12,~-4\right) $ and $ \vec{v_2} = \left(32,~24\right) $ . | 2 |
| 544 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~-4\right) $ and $ \vec{v_2} = \left(1,~-9\right) $ . | 2 |
| 545 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
| 546 | Find the sum of the vectors $ \vec{v_1} = \left(24,~-24\right) $ and $ \vec{v_2} = \left(-7,~10\right) $ . | 2 |
| 547 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-1\right) $ . | 2 |
| 548 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-1\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
| 549 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-1\right) $ . | 2 |
| 550 | Find the angle between vectors $ \left(-4,~-1\right)$ and $\left(4,~2\right)$. | 2 |