Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 551 | Find the difference of the vectors $ \vec{v_1} = \left(0,~-3\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
| 552 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-1\right) $ and $ \vec{v_2} = \left(-4,~-1\right) $ . | 2 |
| 553 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~0\right) $ . | 2 |
| 554 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-11,~-5\right) $ . | 2 |
| 555 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
| 556 | Find the angle between vectors $ \left(-1,~0\right)$ and $\left(-4,~0\right)$. | 2 |
| 557 | Find the angle between vectors $ \left(3,~3\right)$ and $\left(-5,~-20\right)$. | 2 |
| 558 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-3\right) $ and $ \vec{v_2} = \left(4,~-2\right) $ . | 2 |
| 559 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-1\right) $ . | 2 |
| 560 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~1\right) $ . | 2 |
| 561 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(6,~-9\right) $ . | 2 |
| 562 | Find the sum of the vectors $ \vec{v_1} = \left(8,~3\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
| 563 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
| 564 | Find the difference of the vectors $ \vec{v_1} = \left(18,~45\right) $ and $ \vec{v_2} = \left(18,~0\right) $ . | 2 |
| 565 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 347 }{ 100 },~\dfrac{ 197 }{ 10 }\right) $ . | 2 |
| 566 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~8\right) $ . | 2 |
| 567 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-8\right) $ and $ \vec{v_2} = \left(1,~-7\right) $ . | 2 |
| 568 | Find the angle between vectors $ \left(-1,~8\right)$ and $\left(0,~-1\right)$. | 2 |
| 569 | Find the angle between vectors $ \left(-3,~-1\right)$ and $\left(-9,~-2\right)$. | 2 |
| 570 | Find the angle between vectors $ \left(-2,~1\right)$ and $\left(-4,~2\right)$. | 2 |
| 571 | Find the sum of the vectors $ \vec{v_1} = \left(4,~0\right) $ and $ \vec{v_2} = \left(0,~6\right) $ . | 2 |
| 572 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~1\right) $ . | 2 |
| 573 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~12\right) $ . | 2 |
| 574 | Find the magnitude of the vector $ \| \vec{v} \| = \left(10,~24\right) $ . | 2 |
| 575 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(5,~-6\right) $ . | 2 |
| 576 | Find the sum of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
| 577 | Find the difference of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
| 578 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~7\right) $ . | 2 |
| 579 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~7\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 2 |
| 580 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(8,~-4\right) $ . | 2 |
| 581 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
| 582 | Find the sum of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(9,~-4\right) $ . | 2 |
| 583 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-1\right) $ . | 2 |
| 584 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~-4\right) $ and $ \vec{v_2} = \left(3,~-9\right) $ . | 2 |
| 585 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
| 586 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~-9\right) $ and $ \vec{v_2} = \left(-3,~1\right) $ . | 2 |
| 587 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-6,~3\right) $ . | 2 |
| 588 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~15\right) $ and $ \vec{v_2} = \left(24,~18\right) $ . | 2 |
| 589 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-9\right) $ and $ \vec{v_2} = \left(7,~6\right) $ . | 2 |
| 590 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(4,~8\right) $ . | 2 |
| 591 | Find the angle between vectors $ \left(3,~3,~10\right)$ and $\left(7,~5,~0\right)$. | 2 |
| 592 | Find the sum of the vectors $ \vec{v_1} = \left(4,~4\right) $ and $ \vec{v_2} = \left(-2,~-2\right) $ . | 2 |
| 593 | Find the angle between vectors $ \left(4,~3\right)$ and $\left(-1,~-1\right)$. | 2 |
| 594 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
| 595 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\sqrt{ 17 },~5\right) $ . | 2 |
| 596 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~2\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
| 597 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
| 598 | Find the projection of the vector $ \vec{v_1} = \left(-1,~-8,~3\right) $ on the vector $ \vec{v_2} = \left(-3,~-3,~-3\right) $. | 2 |
| 599 | Find the sum of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |
| 600 | Find the difference of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |