Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 451 | Find the angle between vectors $ \left(3,~0\right)$ and $\left(5,~5\right)$. | 2 |
| 452 | Find the angle between vectors $ \left(5,~6\right)$ and $\left(-1,~4\right)$. | 2 |
| 453 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~6,~2\right) $ and $ \vec{v_2} = \left(2,~3,~2\right) $ . | 2 |
| 454 | Find the angle between vectors $ \left(-3,~5\right)$ and $\left(-7,~-1\right)$. | 2 |
| 455 | Find the angle between vectors $ \left(-3,~5\right)$ and $\left(-4,~-6\right)$. | 2 |
| 456 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |
| 457 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
| 458 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(10,~10\right) $ . | 2 |
| 459 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
| 460 | Find the angle between vectors $ \left(5,~1,~0\right)$ and $\left(-16,~-12,~-8\right)$. | 2 |
| 461 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-1,~0\right) $ and $ \vec{v_2} = \left(1,~0,~2\right) $ . | 2 |
| 462 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
| 463 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~8\right) $ and $ \vec{v_2} = \left(-3,~-8\right) $ . | 2 |
| 464 | Find the angle between vectors $ \left(5,~-1\right)$ and $\left(4,~6\right)$. | 2 |
| 465 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~5,~5\right) $ and $ \vec{v_2} = \left(-2,~-1,~4\right) $ . | 2 |
| 466 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ and $ \vec{v_2} = \left(0,~1,~0\right) $ . | 2 |
| 467 | Find the angle between vectors $ \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right)$ and $\left(0,~1,~0\right)$. | 2 |
| 468 | Find the difference of the vectors $ \vec{v_1} = \left(0,~1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ . | 2 |
| 469 | Find the projection of the vector $ \vec{v_1} = \left(0,~1,~0\right) $ on the vector $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $. | 2 |
| 470 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~1,~0\right) $ and $ \vec{v_2} = \left(-\dfrac{ 6321 }{ 5000 },~-0.0809,~-1\right) $ . | 2 |
| 471 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 6879 }{ 5000 },~-0.192,~-1\right) $ . | 2 |
| 472 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~42\right) $ . | 2 |
| 473 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~40\right) $ . | 2 |
| 474 | Find the angle between vectors $ \left(-1,~5,~6\right)$ and $\left(2,~3,~-1\right)$. | 2 |
| 475 | Find the angle between vectors $ \left(80,~0\right)$ and $\left(170,~0\right)$. | 2 |
| 476 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
| 477 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~7\right) $ and $ \vec{v_2} = \left(3,~10\right) $ . | 2 |
| 478 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 151 }{ 100 },~\dfrac{ 281 }{ 100 }\right) $ . | 2 |
| 479 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~5\right) $ . | 2 |
| 480 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-30,~23\right) $ . | 2 |
| 481 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-24\right) $ . | 2 |
| 482 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-8,~6\right) $ . | 2 |
| 483 | Find the angle between vectors $ \left(12,~11,~5\right)$ and $\left(4,~15,~5\right)$. | 2 |
| 484 | Find the sum of the vectors $ \vec{v_1} = \left(8,~6\right) $ and $ \vec{v_2} = \left(-8,~5\right) $ . | 2 |
| 485 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~-19\right) $ . | 2 |
| 486 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
| 487 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-2\right) $ and $ \vec{v_2} = \left(-3,~5\right) $ . | 2 |
| 488 | Find the angle between vectors $ \left(3,~-5\right)$ and $\left(6,~-10\right)$. | 2 |
| 489 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-4\right) $ . | 2 |
| 490 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 2 |
| 491 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~4\right) $ . | 2 |
| 492 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-7,~8\right) $ . | 2 |
| 493 | Find the sum of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-7,~8\right) $ . | 2 |
| 494 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ . | 2 |
| 495 | Determine whether the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ are linearly independent or dependent. | 2 |
| 496 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~12\right) $ . | 2 |
| 497 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~12\right) $ and $ \vec{v_2} = \left(9,~-1\right) $ . | 2 |
| 498 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-1,~0\right) $ and $ \vec{v_2} = \left(-1,~1,~0\right) $ . | 2 |
| 499 | Find the angle between vectors $ \left(12,~35\right)$ and $\left(60,~-11\right)$. | 2 |
| 500 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~11,~10\right) $ . | 2 |