Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

You included 0 formulas in your custom cheat sheet.

Cheat Sheet options

How to generate cheat sheet ?

To create cheat sheet first you need to select formulas which you want to include in it. To select formula click at picture next to formula.

cheat sheat tutorial 1

You can choose formulas from different pages.

cheat sheat tutorial 2

After you have selected all the formulas which you would like to include in cheat sheet, click the "Generate PDF" button.

cheat sheat tutorial 3

Math Formulas: Special Power Series

Powers of Natural Numbers

$$ \sum\limits_{k=1}^n k = \frac{1}{2}n(n+1) $$
$$ \sum\limits_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1) $$
$$ \sum\limits_{k=1}^n k^3 = \frac{1}{4}n^2(n+1)^2 $$

Special Power Series

$$ \frac{1}{1-x} = 1 + x + x^2 +x^3 + \cdots \quad(\text{for } -1 < x < 1) $$
$$ \frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots \quad(\text{for } -1 < x < 1) $$
$$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$
$$ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad (\text{for } -1 < x < 1) $$
$$ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots $$
$$ \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots $$
$$ \tan\,x = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots \quad \left(\text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \right)$$
$$ \sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots $$
$$ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots $$

Were these formulas helpful?

Yes No