0 formulas included in custom cheat sheet |
Universal set : $ I $
Empty set: $ \varnothing $
Union of sets
|
$$ A \cup B = \left\{x : x \in A ~~ or ~~ x \in B \right\} $$ |
Intersection of sets
|
$$ A \cap B = \left\{x : x \in A ~~ and ~~ x \in B \right\} $$ |
Complement
|
$$ A' = \left\{ x \in I : x \not \in A \right\} $$ |
Difference of sets
|
$$ A \setminus B = \left\{x : x \in A ~~ and ~~ x \not \in B \right\} $$ |
Cartesian product
|
$$ A \times B = \left\{ (x,y) : x \in A ~~ and ~~ y \in B \right\} $$ |
Commutativity
|
$$ A \cup B = B \cup A $$ |
Associativity
|
$$ A \cup \left(B \cup C \right) = \left( A \cup B \right) \cup C $$ |
Idempotency
|
$$ A \cup A = A $$ |
Commutativity
|
$$ A \cap B = B \cap A $$ |
Associativity
|
$$ A \cap \left(B \cap C \right) = \left( A \cap B \right) \cap C $$ |
Idempotency
|
$$ A \cap A = A $$ |
Distributivity
|
$$ A \cup \left(B \cap C \right) = \left(A \cup B \right) \cap \left(A \cup C \right) $$ |
|
$$ A \cap \left(B \cup C \right) = \left(A \cap B \right) \cup \left(A \cap C \right) $$ |
Domination
|
$$ A \cap \varnothing = \varnothing $$ |
|
$$ A \cup I = I $$ |
Identity
|
$$ A \cup \varnothing = \varnothing $$ |
|
$$ A \cap I = A $$ |
Complement of intersection and union
|
$$ A \cup A' = I $$ |
|
$$ A \cap A' = \varnothing $$ |
De Morgan's laws
|
$$\left( A \cup B \right)' = A' \cap B~' $$ |
|
$$ \left(A \cap B \right)' = A' \cup B~' $$ |
|
$$ B \setminus A = B \setminus \left( A \cup B \right) $$ |
|
$$ B \setminus A = B \cap A' $$ |
|
$$ A \setminus A = \varnothing $$ |
|
$$ \left(A \setminus B \right) \cap C = \left(A \cap C \right) \setminus \left(B \cap C \right) $$ |
|
$$ A' = I \setminus A $$ |
Please tell me how can I make this better.