Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 1601 | Find the sum of the vectors $ \vec{v_1} = \left(1,~5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
| 1602 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
| 1603 | Find the sum of the vectors $ \vec{v_1} = \left(7,~8\right) $ and $ \vec{v_2} = \left(9,~0\right) $ . | 2 |
| 1604 | Find the sum of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(9,~0\right) $ . | 2 |
| 1605 | Find the difference of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(9,~0\right) $ . | 2 |
| 1606 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(9,~0\right) $ . | 2 |
| 1607 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~1\right) $ and $ \vec{v_2} = \left(-7,~4\right) $ . | 2 |
| 1608 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-18,~3\right) $ and $ \vec{v_2} = \left(1,~6\right) $ . | 2 |
| 1609 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
| 1610 | Determine whether the vectors $ \vec{v_1} = \left(-6,~6\right) $ and $ \vec{v_2} = \left(8,~8\right) $ are linearly independent or dependent. | 2 |
| 1611 | Determine whether the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(18,~-12\right) $ are linearly independent or dependent. | 2 |
| 1612 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-4\right) $ . | 2 |
| 1613 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~8\right) $ . | 2 |
| 1614 | Find the projection of the vector $ \vec{v_1} = \left(1,~1\right) $ on the vector $ \vec{v_2} = \left(8,~3\right) $. | 2 |
| 1615 | Find the magnitude of the vector $ \| \vec{v} \| = \left(14,~4\right) $ . | 2 |
| 1616 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~3\right) $ . | 2 |
| 1617 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-21,~28\right) $ . | 2 |
| 1618 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~-3,~3\right) $ and $ \vec{v_2} = \left(0,~3,~-1\right) $ . | 2 |
| 1619 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3020,~2800\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
| 1620 | Find the projection of the vector $ \vec{v_1} = \left(3020,~2800\right) $ on the vector $ \vec{v_2} = \left(1,~1\right) $. | 2 |
| 1621 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
| 1622 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0,~1\right) $ . | 2 |
| 1623 | Find the angle between vectors $ \left(-2,~-4\right)$ and $\left(4,~8\right)$. | 2 |
| 1624 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~7\right) $ . | 2 |
| 1625 | Find the angle between vectors $ \left(-9,~7\right)$ and $\left(7,~5\right)$. | 2 |
| 1626 | Determine whether the vectors $ \vec{v_1} = \left(-9,~7\right) $ and $ \vec{v_2} = \left(7,~5\right) $ are linearly independent or dependent. | 2 |
| 1627 | Determine whether the vectors $ \vec{v_1} = \left(-4,~3\right) $ and $ \vec{v_2} = \left(8,~-6\right) $ are linearly independent or dependent. | 2 |
| 1628 | Find the angle between vectors $ \left(-4,~3\right)$ and $\left(8,~-6\right)$. | 2 |
| 1629 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~12\right) $ and $ \vec{v_2} = \left(-5,~2\right) $ . | 2 |
| 1630 | Determine whether the vectors $ \vec{v_1} = \left(4,~4,~4\right) $, $ \vec{v_2} = \left(11,~11,~11\right) $ and $ \vec{v_3} = \left(0,~0,~0\right)$ are linearly independent or dependent. | 2 |
| 1631 | Determine whether the vectors $ \vec{v_1} = \left(-1,~-4,~-7\right) $, $ \vec{v_2} = \left(3,~8,~-1\right) $ and $ \vec{v_3} = \left(2,~-6,~-59\right)$ are linearly independent or dependent. | 2 |
| 1632 | Find the projection of the vector $ \vec{v_1} = \left(-3,~1,~5\right) $ on the vector $ \vec{v_2} = \left(-2,~3,~8\right) $. | 2 |
| 1633 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(12,~16\right) $ . | 2 |
| 1634 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~3\right) $ and $ \vec{v_2} = \left(12,~16\right) $ . | 2 |
| 1635 | Find the projection of the vector $ \vec{v_1} = \left(-4,~4\right) $ on the vector $ \vec{v_2} = \left(12,~16\right) $. | 2 |
| 1636 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~0\right) $ . | 2 |
| 1637 | Find the angle between vectors $ \left(7,~190\right)$ and $\left(3,~90\right)$. | 2 |
| 1638 | Find the sum of the vectors $ \vec{v_1} = \left(7,~190\right) $ and $ \vec{v_2} = \left(3,~90\right) $ . | 2 |
| 1639 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~3\right) $ . | 2 |
| 1640 | Find the sum of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
| 1641 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
| 1642 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~-5\right) $ and $ \vec{v_2} = \left(0,~9\right) $ . | 2 |
| 1643 | Find the angle between vectors $ \left(9,~2\right)$ and $\left(6,~3\right)$. | 2 |
| 1644 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~48\right) $ . | 2 |
| 1645 | Find the difference of the vectors $ \vec{v_1} = \left(5,~9\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
| 1646 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~9\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ . | 2 |
| 1647 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~13\right) $ . | 2 |
| 1648 | Find the difference of the vectors $ \vec{v_1} = \left(9,~-2\right) $ and $ \vec{v_2} = \left(4,~7\right) $ . | 2 |
| 1649 | Find the angle between vectors $ \left(-3,~8\right)$ and $\left(6,~-4\right)$. | 2 |
| 1650 | Find the sum of the vectors $ \vec{v_1} = \left(8,~2\right) $ and $ \vec{v_2} = \left(-6,~8\right) $ . | 2 |