Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 1551 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 17043 }{ 10 },~\dfrac{ 31 }{ 5 },~-\dfrac{ 5772 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 8611 }{ 5 },~\dfrac{ 13 }{ 2 },~-\dfrac{ 5748 }{ 5 }\right) $ . | 2 |
| 1552 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~1,~1\right) $ and $ \vec{v_2} = \left(0,~2,~1\right) $ . | 2 |
| 1553 | Find the sum of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
| 1554 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 1555 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
| 1556 | Find the angle between vectors $ \left(0,~1\right)$ and $\left(1,~1\right)$. | 2 |
| 1557 | Determine whether the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(1,~1\right) $ are linearly independent or dependent. | 2 |
| 1558 | Find the projection of the vector $ \vec{v_1} = \left(0,~1\right) $ on the vector $ \vec{v_2} = \left(1,~1\right) $. | 2 |
| 1559 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 2 |
| 1560 | Find the sum of the vectors $ \vec{v_1} = \left(3,~7\right) $ and $ \vec{v_2} = \left(-8,~4\right) $ . | 2 |
| 1561 | Find the angle between vectors $ \left(9,~6\right)$ and $\left(-4,~5\right)$. | 2 |
| 1562 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~6\right) $ and $ \vec{v_2} = \left(-4,~6\right) $ . | 2 |
| 1563 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-5\right) $ . | 2 |
| 1564 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~6\right) $ and $ \vec{v_2} = \left(-1,~-5\right) $ . | 2 |
| 1565 | Find the sum of the vectors $ \vec{v_1} = \left(120000,~30\right) $ and $ \vec{v_2} = \left(40000,~-90\right) $ . | 2 |
| 1566 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
| 1567 | Find the difference of the vectors $ \vec{v_1} = \left(-8,~-3\right) $ and $ \vec{v_2} = \left(-5,~-8\right) $ . | 2 |
| 1568 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~9\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
| 1569 | Find the angle between vectors $ \left(\dfrac{ 7 }{ 5 },~\dfrac{ 121 }{ 50 }\right)$ and $\left(\dfrac{ 19 }{ 20 },~\dfrac{ 33 }{ 20 }\right)$. | 2 |
| 1570 | Find the angle between vectors $ \left(1,~0\right)$ and $\left(0,~1\right)$. | 2 |
| 1571 | Find the magnitude of the vector $ \| \vec{v} \| = \left(30,~0\right) $ . | 2 |
| 1572 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-3,~2\right) $ . | 2 |
| 1573 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-12,~5\right) $ . | 2 |
| 1574 | Determine whether the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-4,~0\right) $ are linearly independent or dependent. | 2 |
| 1575 | Find the projection of the vector $ \vec{v_1} = \left(3,~0\right) $ on the vector $ \vec{v_2} = \left(-2,~0\right) $. | 2 |
| 1576 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~4\right) $ and $ \vec{v_2} = \left(8,~-2\right) $ . | 2 |
| 1577 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-2\right) $ . | 2 |
| 1578 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4,~2\right) $ and $ \vec{v_2} = \left(2,~2,~1\right) $ . | 2 |
| 1579 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3,~-2\right) $ and $ \vec{v_2} = \left(1,~-2,~3\right) $ . | 2 |
| 1580 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~3,~-2\right) $ and $ \vec{v_2} = \left(-8,~5,~6\right) $ . | 2 |
| 1581 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 2069 }{ 100 },~\dfrac{ 857 }{ 100 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 997 }{ 100 },~\dfrac{ 1499 }{ 50 }\right) $ . | 2 |
| 1582 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~5\right) $ and $ \vec{v_2} = \left(2,~-4\right) $ . | 2 |
| 1583 | Find the sum of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-1,~-5\right) $ . | 2 |
| 1584 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(1,~1,~2\right) $ . | 2 |
| 1585 | Find the projection of the vector $ \vec{v_1} = \left(1,~-2,~1\right) $ on the vector $ \vec{v_2} = \left(4,~-4,~7\right) $. | 2 |
| 1586 | Find the projection of the vector $ \vec{v_1} = \left(2 \sqrt{ 3 },~2\right) $ on the vector $ \vec{v_2} = \left(6,~0\right) $. | 2 |
| 1587 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(2,~1\right)$. | 2 |
| 1588 | Find the angle between vectors $ \left(3,~-4\right)$ and $\left(1,~0\right)$. | 2 |
| 1589 | Find the projection of the vector $ \vec{v_1} = \left(-8,~4\right) $ on the vector $ \vec{v_2} = \left(7,~-6\right) $. | 2 |
| 1590 | Find the magnitude of the vector $ \| \vec{v} \| = \left(37,~40\right) $ . | 2 |
| 1591 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~5\right) $ . | 2 |
| 1592 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~2\right) $ . | 2 |
| 1593 | Find the sum of the vectors $ \vec{v_1} = \left(5,~5\right) $ and $ \vec{v_2} = \left(2,~6\right) $ . | 2 |
| 1594 | Find the projection of the vector $ \vec{v_1} = \left(5,~5\right) $ on the vector $ \vec{v_2} = \left(2,~6\right) $. | 2 |
| 1595 | Find the difference of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(-9,~16\right) $ . | 2 |
| 1596 | Find the difference of the vectors $ \vec{v_1} = \left(7,~4\right) $ and $ \vec{v_2} = \left(-9,~28\right) $ . | 2 |
| 1597 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ . | 2 |
| 1598 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~5,~5\right) $ and $ \vec{v_2} = \left(5,~0,~-5\right) $ . | 2 |
| 1599 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~4\right) $ . | 2 |
| 1600 | Find the sum of the vectors $ \vec{v_1} = \left(1,~5\right) $ and $ \vec{v_2} = \left(43,~0\right) $ . | 2 |