The lengths of the medians of a triangle $ ABC $ are:
$$ m_a = \sqrt{ 109 } ~~,~~ m_b = 2 \sqrt{ 10 } ~~,~~ m_c = \sqrt{ 73 } $$A median $ m_a $ is a line segment joining a vertex $ A $ to the midpoint of the side $ BC $. In this example the midpoint of $ BC $ is $ \left(10,~3\right) $.
The distance between $ A $ and $ M $ is:
$$ d(A,M) = \sqrt{ 109 } $$