Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 551 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 12 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 2 |
| 552 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ \left( y - 4 \right)^2}{ 81 } = 1 $$ | 2 |
| 553 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 2 |
| 554 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 16 } + \dfrac{ y^2}{ 49 } = 1 $$ | 2 |
| 555 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
| 556 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y + 9 \right)^2}{ 51 } = 1 $$ | 2 |
| 557 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 36 $$ | 2 |
| 558 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 25 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
| 559 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 9 }{ 20 } \right)^2}{ 1 } + \dfrac{ \left( y + \frac{ 17 }{ 25 } \right)^2}{ 9 } = 1 $$ | 2 |
| 560 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 10 } + \dfrac{ y^2}{ 6 } = 1 $$ | 2 |
| 561 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 49 } + \dfrac{ \left( y + 4 \right)^2}{ 64 } = 1 $$ | 2 |
| 562 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 3 }{ 4 } } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
| 563 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 25 } + \dfrac{ \left( y - 1 \right)^2}{ 9 } = 1 $$ | 2 |
| 564 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
| 565 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 6 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 2 |
| 566 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 6 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 2 |
| 567 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 150 } + \dfrac{ y^2}{ 280 } = 1 $$ | 2 |
| 568 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 64 } + \dfrac{ \left( y + 5 \right)^2}{ 25 } = 1 $$ | 2 |
| 569 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2 } + \dfrac{ \left( y + 2 \right)^2}{ 5 } = 1 $$ | 2 |
| 570 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 25 } = 1 $$ | 2 |
| 571 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
| 572 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 8x^2 + 6y^2 = 1 $$ | 2 |
| 573 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y - 4 \right)^2}{ 1 } = 1 $$ | 2 |
| 574 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 24 } + \dfrac{ \left( y + 2 \right)^2}{ \frac{ 7 }{ 2 } } = 1 $$ | 2 |
| 575 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 217 }{ 50 } \right)^2}{ \frac{ 27 }{ 10 } } + \dfrac{ \left( y + \frac{ 347 }{ 100 } \right)^2}{ \frac{ 27 }{ 5 } } = 1 $$ | 2 |
| 576 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 217 }{ 50 } \right)^2}{ \frac{ 27 }{ 10 } } + \dfrac{ \left( y - \frac{ 347 }{ 100 } \right)^2}{ \frac{ 27 }{ 5 } } = 1 $$ | 2 |
| 577 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 21 } + \dfrac{ \left( y - \frac{ 16 }{ 5 } \right)^2}{ \frac{ 11 }{ 2 } } = 1 $$ | 2 |
| 578 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y + 5 \right)^2}{ 9 } = 1 $$ | 2 |
| 579 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 65 } + \dfrac{ y^2}{ 37 } = 1 $$ | 2 |
| 580 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8 } + \dfrac{ y^2}{ \frac{ 11 }{ 2 } } = 1 $$ | 2 |
| 581 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 1 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
| 582 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \sqrt{ 68 } } + \dfrac{ y^2}{ 64 } = 1 $$ | 2 |
| 583 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 2 |
| 584 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 585 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 25x^2 + 27y^2 = 675 $$ | 2 |
| 586 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2 } + \dfrac{ y^2}{ 6 } = 1 $$ | 2 |
| 587 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 6 } = 1 $$ | 2 |
| 588 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
| 589 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 81 } + \dfrac{ \left( y - 1 \right)^2}{ 32 } = 1 $$ | 2 |
| 590 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 49 } = 1 $$ | 2 |
| 591 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 230 } + \dfrac{ y^2}{ \frac{ 11979 }{ 25 } } = 1 $$ | 2 |
| 592 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 3 } + \dfrac{ y^2}{ 6 } = 1 $$ | 2 |
| 593 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 22x^2 + y^2 = 88 $$ | 2 |
| 594 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ \frac{ 9 }{ 4 } } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 2 |
| 595 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 24 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |
| 596 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 7y^2 = 5 $$ | 2 |
| 597 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6 } + \dfrac{ y^2}{ 5 } = 1 $$ | 2 |
| 598 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 36 } = 1 $$ | 2 |
| 599 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 600 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 2 |