Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 601 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 27 } = 1 $$ | 2 |
| 602 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 64 } + \dfrac{ \left( y + 1 \right)^2}{ 36 } = 1 $$ | 2 |
| 603 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 4 } = 1 $$ | 2 |
| 604 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 5 \right)^2}{ 16 } = 1 $$ | 2 |
| 605 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 5 \right)^2}{ 16 } = 1 $$ | 2 |
| 606 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
| 607 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 5 \right)^2}{ 16 } = 1 $$ | 2 |
| 608 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 3 } + \dfrac{ \left( y - 1 \right)^2}{ 2 } = 1 $$ | 2 |
| 609 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ \frac{ 25 }{ 4 } } + \dfrac{ \left( y - 6 \right)^2}{ 1 } = 1 $$ | 2 |
| 610 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 51 } + \dfrac{ y^2}{ \frac{ 51 }{ 2 } } = 1 $$ | 2 |
| 611 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
| 612 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 49 } = 1 $$ | 2 |
| 613 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ \frac{ 1 }{ 9 } } + \dfrac{ \left( y + 8 \right)^2}{ 8 } = 1 $$ | 2 |
| 614 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ \frac{ 1 }{ 9 } } + \dfrac{ \left( y - 8 \right)^2}{ 8 } = 1 $$ | 2 |
| 615 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 20 } + \dfrac{ y^2}{ 10 } = 1 $$ | 2 |
| 616 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 16 } = 1 $$ | 2 |
| 617 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6 } + \dfrac{ y^2}{ \frac{ 9 }{ 2 } } = 1 $$ | 2 |
| 618 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 619 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 2x^2 + 5y^2 = 10 $$ | 2 |
| 620 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 6 } + \dfrac{ y^2}{ 16 } = 1 $$ | 2 |
| 621 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 100 } = 1 $$ | 2 |
| 622 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 7 }{ 2 } \right)^2}{ 2 } + \dfrac{ \left( y + \frac{ 27 }{ 2 } \right)^2}{ 5 } = 1 $$ | 2 |
| 623 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 2 \right)^2}{ 5 } = 1 $$ | 2 |
| 624 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 12 } + \dfrac{ \left( y + 4 \right)^2}{ 36 } = 1 $$ | 2 |
| 625 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 1 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 2 |
| 626 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 150 } + \dfrac{ y^2}{ 200 } = 1 $$ | 2 |
| 627 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 1 \right)^2}{ 1 } + \dfrac{ 4 \left( y + 1 \right)^2}{ 1 } = 1 $$ | 2 |
| 628 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 1 \right)^2}{ 25 } + \dfrac{ 4 \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 629 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 10 } + \dfrac{ y^2}{ \frac{ 67 }{ 10 } } = 1 $$ | 2 |
| 630 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 2 |
| 631 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2 } + \dfrac{ y^2}{ 18 } = 1 $$ | 2 |
| 632 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ y^2}{ \sqrt{ 2 } } = 1 $$ | 2 |
| 633 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 1 $$ | 2 |
| 634 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 2 |
| 635 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 36 } = 1 $$ | 2 |
| 636 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 2 |
| 637 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |
| 638 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 36 $$ | 2 |
| 639 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1000 } + \dfrac{ y^2}{ 500 } = 1 $$ | 2 |
| 640 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 2500 } + \dfrac{ y^2}{ 900 } = 1 $$ | 2 |
| 641 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 9 }{ 4 } } + \dfrac{ y^2}{ 5 } = 1 $$ | 2 |
| 642 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 28 } + \dfrac{ y^2}{ 12 } = 1 $$ | 2 |
| 643 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 x^2}{ 400 } + \dfrac{ 16 \left( y - 2 \right)^2}{ 400 } = 1 $$ | 1 |
| 644 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 16 } = 1 $$ | 1 |
| 645 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
| 646 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + 9y^2 = 36 $$ | 1 |
| 647 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 1 |
| 648 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 5 } + \dfrac{ \left( y - 1 \right)^2}{ 15 } = 1 $$ | 1 |
| 649 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y + 5 \right)^2}{ 1 } = 1 $$ | 1 |
| 650 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 1 |