Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 1301 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + 16y^2 = 340 $$ | 1 |
| 1302 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 2 } + \dfrac{ 2 \left( y - 1 \right)^2}{ 1 } = 1 $$ | 1 |
| 1303 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 20 } = 1 $$ | 1 |
| 1304 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
| 1305 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 16 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
| 1306 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
| 1307 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 4 }{ 5 } } + \dfrac{ \left( y - \frac{ 5 }{ 2 } \right)^2}{ \frac{ 3 }{ 5 } } = 1 $$ | 1 |
| 1308 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 1 }{ 10 } } + \dfrac{ \left( y - \frac{ 5 }{ 2 } \right)^2}{ \frac{ 2 }{ 25 } } = 1 $$ | 1 |