Ellipse
(the database of solved problems)
All the problems and solutions shown below were generated using the Ellipse Calculator.
| ID |
Problem |
Count |
| 501 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x + 3 \right)^2}{ 48 } + \dfrac{ 4 \left( y - 2 \right)^2}{ 48 } = 1 $$ | 2 |
| 502 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 100 } + \dfrac{ \left( y + 5 \right)^2}{ 676 } = 1 $$ | 2 |
| 503 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 2 |
| 504 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 25 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 2 |
| 505 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 10 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 506 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 60 } + \dfrac{ y^2}{ 24 } = 1 $$ | 2 |
| 507 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 49x^2 + 16y^2 = 784 $$ | 2 |
| 508 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y - 1 \right)^2}{ 15 } = 1 $$ | 2 |
| 509 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 2 |
| 510 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 81 } = 1 $$ | 2 |
| 511 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 64 } = 1 $$ | 2 |
| 512 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ 1600 } = 1 $$ | 2 |
| 513 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 36 } + \dfrac{ \left( y - 5 \right)^2}{ 4 } = 1 $$ | 2 |
| 514 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 2 |
| 515 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 516 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ 25 } = 1 $$ | 2 |
| 517 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 3 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |
| 518 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 181 }{ 10 } } + \dfrac{ y^2}{ \frac{ 91 }{ 10 } } = 1 $$ | 2 |
| 519 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 2y^2 = 1 $$ | 2 |
| 520 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 6 \right)^2}{ 25 } + \dfrac{ \left( y - 7 \right)^2}{ 37 } = 1 $$ | 2 |
| 521 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 34869 }{ 2 } } + \dfrac{ y^2}{ 6532 } = 1 $$ | 2 |
| 522 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 11 }{ 2 } } + \dfrac{ y^2}{ \frac{ 11 }{ 5 } } = 1 $$ | 2 |
| 523 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 4 \left( x - 2 \right)^2}{ 64 } + \dfrac{ 16 \left( y + 3 \right)^2}{ 64 } = 1 $$ | 2 |
| 524 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
| 525 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 1 } = 1 $$ | 2 |
| 526 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 17 } = 1 $$ | 2 |
| 527 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 45 } + \dfrac{ \left( y + 4 \right)^2}{ 81 } = 1 $$ | 2 |
| 528 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 64 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
| 529 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 530 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 12 } = 1 $$ | 2 |
| 531 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 533 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
| 532 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 35 } + \dfrac{ y^2}{ 25 } = 1 $$ | 2 |
| 533 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 4y^2 = 36 $$ | 2 |
| 534 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 0.0262 } + \dfrac{ y^2}{ 0.0194 } = 1 $$ | 2 |
| 535 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 12 } + \dfrac{ y^2}{ 6 } = 1 $$ | 2 |
| 536 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
| 537 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y + 5 \right)^2}{ 16 } = 1 $$ | 2 |
| 538 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 1 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 2 |
| 539 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 70 } + \dfrac{ y^2}{ 16 } = 1 $$ | 2 |
| 540 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 12 } + \dfrac{ y^2}{ 13 } = 1 $$ | 2 |
| 541 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 2 } = 1 $$ | 2 |
| 542 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 25 } + \dfrac{ \left( y - 1 \right)^2}{ 36 } = 1 $$ | 2 |
| 543 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ \frac{ 5 }{ 2 } } = 1 $$ | 2 |
| 544 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 2 \right)^2}{ 21 } = 1 $$ | 2 |
| 545 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |
| 546 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 125 } + \dfrac{ \left( y + 1 \right)^2}{ 49 } = 1 $$ | 2 |
| 547 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 49 } = 1 $$ | 2 |
| 548 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 9x^2 + 25y^2 = 225 $$ | 2 |
| 549 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 36 } + \dfrac{ \left( y + 2 \right)^2}{ 27 } = 1 $$ | 2 |
| 550 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 1 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |