Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 2101 | Find the projection of the vector $ \vec{v_1} = \left(4,~1\right) $ on the vector $ \vec{v_2} = \left(2,~5\right) $. | 2 |
| 2102 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~1\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
| 2103 | Find the angle between vectors $ \left(4,~1\right)$ and $\left(2,~5\right)$. | 2 |
| 2104 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~3\right) $ . | 2 |
| 2105 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~3\right) $ . | 2 |
| 2106 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~7\right) $ and $ \vec{v_2} = \left(-1,~-6\right) $ . | 2 |
| 2107 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~7\right) $ . | 2 |
| 2108 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1,~-2\right) $ . | 2 |
| 2109 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2000,~45\right) $ . | 2 |
| 2110 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(-2,~6\right) $ . | 2 |
| 2111 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~1,~2\right) $ and $ \vec{v_2} = \left(2,~4,~2\right) $ . | 2 |
| 2112 | Find the angle between vectors $ \left(3,~1,~2\right)$ and $\left(2,~4,~2\right)$. | 2 |
| 2113 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(-2,~-1\right) $ . | 2 |
| 2114 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(6,~-4\right) $ . | 2 |
| 2115 | Calculate the dot product of the vectors $ \vec{v_1} = \left(240,~310\right) $ and $ \vec{v_2} = \left(\dfrac{ 14 }{ 5 },~\dfrac{ 74 }{ 25 }\right) $ . | 2 |
| 2116 | Find the sum of the vectors $ \vec{v_1} = \left(7,~1\right) $ and $ \vec{v_2} = \left(-5,~-3\right) $ . | 2 |
| 2117 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 4 },~2\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
| 2118 | Find the angle between vectors $ \left(2,~-5\right)$ and $\left(-3,~8\right)$. | 2 |
| 2119 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-1\right) $ . | 2 |
| 2120 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~-1\right) $ and $ \vec{v_2} = \left(3,~3\right) $ . | 2 |
| 2121 | Find the sum of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-2,~-5\right) $ . | 2 |
| 2122 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4\right) $ and $ \vec{v_2} = \left(2,~-2\right) $ . | 2 |
| 2123 | Find the sum of the vectors $ \vec{v_1} = \left(3130,~108\right) $ and $ \vec{v_2} = \left(2860,~168\right) $ . | 2 |
| 2124 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3130,~108\right) $ . | 2 |
| 2125 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
| 2126 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~1\right) $ . | 2 |
| 2127 | Find the magnitude of the vector $ \| \vec{v} \| = \left(30,~12\right) $ . | 2 |
| 2128 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~0\right) $ . | 2 |
| 2129 | Find the angle between vectors $ \left(4,~-8\right)$ and $\left(-2,~4\right)$. | 2 |
| 2130 | Determine whether the vectors $ \vec{v_1} = \left(4,~-8\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ are linearly independent or dependent. | 2 |
| 2131 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-7\right) $ and $ \vec{v_2} = \left(-2,~6\right) $ . | 2 |
| 2132 | Find the sum of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(-2,~5\right) $ . | 2 |
| 2133 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(5,~-1,~1\right)$. | 2 |
| 2134 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
| 2135 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(-1,~-1,~5\right)$. | 2 |
| 2136 | Find the angle between vectors $ \left(-5,~-1,~1\right)$ and $\left(5,~-1,~1\right)$. | 2 |
| 2137 | Find the angle between vectors $ \left(-5,~-1,~1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
| 2138 | Find the angle between vectors $ \left(5,~-1,~1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
| 2139 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~4\right) $ . | 2 |
| 2140 | Find the angle between vectors $ \left(-7,~4\right)$ and $\left(-1,~-4\right)$. | 2 |
| 2141 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
| 2142 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~2\right) $ and $ \vec{v_2} = \left(-3,~7\right) $ . | 2 |
| 2143 | Find the angle between vectors $ \left(9,~-8\right)$ and $\left(2,~-12\right)$. | 2 |
| 2144 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-11\right) $ . | 2 |
| 2145 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
| 2146 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~5\right) $ . | 2 |
| 2147 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3130,~108\right) $ . | 2 |
| 2148 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 2 |
| 2149 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-4\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 2 |
| 2150 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~1\right) $ . | 2 |