Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 1701 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 2 |
| 1702 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(3,~3\right) $ . | 2 |
| 1703 | Find the angle between vectors $ \left(2 \sqrt{ 3 },~\sqrt{ 3 },~-1\right)$ and $\left(1,~-2,~2\right)$. | 2 |
| 1704 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(9,~12\right) $ . | 2 |
| 1705 | Find the angle between vectors $ \left(5,~-1\right)$ and $\left(3,~2\right)$. | 2 |
| 1706 | Find the difference of the vectors $ \vec{v_1} = \left(-\dfrac{ 5387 }{ 125 },~\dfrac{ 68951 }{ 1250 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 10363 }{ 125 },~-\dfrac{ 55919 }{ 1000 }\right) $ . | 2 |
| 1707 | Find the sum of the vectors $ \vec{v_1} = \left(16,~0\right) $ and $ \vec{v_2} = \left(0,~-14\right) $ . | 2 |
| 1708 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 2 |
| 1709 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~-3\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 2 |
| 1710 | Find the difference of the vectors $ \vec{v_1} = \left(6,~8\right) $ and $ \vec{v_2} = \left(8,~-6\right) $ . | 2 |
| 1711 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~1\right) $ . | 2 |
| 1712 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-1\right) $ and $ \vec{v_2} = \left(4,~-8\right) $ . | 2 |
| 1713 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 83 }{ 10 },~3\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 34 }{ 5 }\right) $ . | 2 |
| 1714 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 83 }{ 10 },~3\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 34 }{ 5 }\right) $ . | 2 |
| 1715 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 97 }{ 10 },~\dfrac{ 49 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 7 }{ 5 },~\dfrac{ 34 }{ 5 }\right) $ . | 2 |
| 1716 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(-1,~4\right) $ . | 2 |
| 1717 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-2\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
| 1718 | Determine whether the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(-1,~4\right) $ are linearly independent or dependent. | 2 |
| 1719 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-2\right) $ . | 2 |
| 1720 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-4,~8,~10\right) $ and $ \vec{v_2} = \left(4,~2,~-6\right) $ . | 2 |
| 1721 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~2,~-6\right) $ and $ \vec{v_2} = \left(2,~-1,~3\right) $ . | 2 |
| 1722 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~1,~-3\right) $ and $ \vec{v_2} = \left(2,~-1,~3\right) $ . | 2 |
| 1723 | Find the sum of the vectors $ \vec{v_1} = \left(1,~\dfrac{ 1 }{ 2 }\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
| 1724 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~\dfrac{ 1 }{ 2 }\right) $ . | 2 |
| 1725 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~3\right) $ and $ \vec{v_2} = \left(7,~-15\right) $ . | 2 |
| 1726 | Find the sum of the vectors $ \vec{v_1} = \left(-7,~-1,~2\right) $ and $ \vec{v_2} = \left(-1,~1,~5\right) $ . | 2 |
| 1727 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~3,~-4\right) $ and $ \vec{v_2} = \left(-3,~2,~3\right) $ . | 2 |
| 1728 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~5\right) $ . | 2 |
| 1729 | Find the sum of the vectors $ \vec{v_1} = \left(-7,~0\right) $ and $ \vec{v_2} = \left(5,~5\right) $ . | 2 |
| 1730 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~0\right) $ and $ \vec{v_2} = \left(5,~5\right) $ . | 2 |
| 1731 | Find the angle between vectors $ \left(-7,~0\right)$ and $\left(8,~-1\right)$. | 2 |
| 1732 | Find the projection of the vector $ \vec{v_1} = \left(-7,~0\right) $ on the vector $ \vec{v_2} = \left(8,~-1\right) $. | 2 |
| 1733 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~0\right) $ . | 2 |
| 1734 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~2\right) $ . | 2 |
| 1735 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-5\right) $ and $ \vec{v_2} = \left(-4,~-2\right) $ . | 2 |
| 1736 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-5\right) $ . | 2 |
| 1737 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~0\right) $ . | 2 |
| 1738 | Find the projection of the vector $ \vec{v_1} = \left(1,~0\right) $ on the vector $ \vec{v_2} = \left(2,~1\right) $. | 2 |
| 1739 | Find the projection of the vector $ \vec{v_1} = \left(2,~0\right) $ on the vector $ \vec{v_2} = \left(2,~1\right) $. | 2 |
| 1740 | Find the projection of the vector $ \vec{v_1} = \left(2,~0\right) $ on the vector $ \vec{v_2} = \left(4,~2\right) $. | 2 |
| 1741 | Find the projection of the vector $ \vec{v_1} = \left(2,~0\right) $ on the vector $ \vec{v_2} = \left(6,~3\right) $. | 2 |
| 1742 | Find the projection of the vector $ \vec{v_1} = \left(0,~1\right) $ on the vector $ \vec{v_2} = \left(2,~1\right) $. | 2 |
| 1743 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~8\right) $ . | 2 |
| 1744 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~8\right) $ and $ \vec{v_2} = \left(4,~-3\right) $ . | 2 |
| 1745 | Find the angle between vectors $ \left(-2,~8\right)$ and $\left(4,~-3\right)$. | 2 |
| 1746 | Determine whether the vectors $ \vec{v_1} = \left(-\dfrac{ 27 }{ 100 },~-\dfrac{ 9 }{ 25 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 27 }{ 100 },~-\dfrac{ 9 }{ 25 }\right) $ are linearly independent or dependent. | 2 |
| 1747 | Find the projection of the vector $ \vec{v_1} = \left(1,~2\right) $ on the vector $ \vec{v_2} = \left(2,~5\right) $. | 2 |
| 1748 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~6\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
| 1749 | Find the sum of the vectors $ \vec{v_1} = \left(1,~9\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 2 |
| 1750 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~2\right) $ and $ \vec{v_2} = \left(2,~-3\right) $ . | 2 |