Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
| ID |
Problem |
Count |
| 1001 | Find the projection of the vector $ \vec{v_1} = \left(3,~4\right) $ on the vector $ \vec{v_2} = \left(6,~8\right) $. | 2 |
| 1002 | Find the difference of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 2 |
| 1003 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(0,~-8\right) $ . | 2 |
| 1004 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(\dfrac{ 3 \sqrt{ 2}}{ 2 },~\dfrac{ 3 \sqrt{ 2}}{ 2 }\right)$. | 2 |
| 1005 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-8\right) $ and $ \vec{v_2} = \left(7,~\dfrac{ 21 }{ 8 }\right) $ . | 2 |
| 1006 | Find the sum of the vectors $ \vec{v_1} = \left(7,~-4\right) $ and $ \vec{v_2} = \left(-8,~9\right) $ . | 2 |
| 1007 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~24\right) $ and $ \vec{v_2} = \left(5,~-40\right) $ . | 2 |
| 1008 | Find the difference of the vectors $ \vec{v_1} = \left(-27,~24\right) $ and $ \vec{v_2} = \left(-5,~-40\right) $ . | 2 |
| 1009 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-4\right) $ . | 2 |
| 1010 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~-24\right) $ . | 2 |
| 1011 | Find the difference of the vectors $ \vec{v_1} = \left(28,~-1\right) $ and $ \vec{v_2} = \left(-9,~0\right) $ . | 2 |
| 1012 | Find the difference of the vectors $ \vec{v_1} = \left(-20,~45\right) $ and $ \vec{v_2} = \left(37,~-1\right) $ . | 2 |
| 1013 | Find the difference of the vectors $ \vec{v_1} = \left(-20,~45\right) $ and $ \vec{v_2} = \left(-37,~1\right) $ . | 2 |
| 1014 | Find the difference of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(3,~3 \sqrt{ 3 }\right) $ . | 2 |
| 1015 | Find the projection of the vector $ \vec{v_1} = \left(6,~0\right) $ on the vector $ \vec{v_2} = \left(3,~3 \sqrt{ 3 }\right) $. | 2 |
| 1016 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-2,~1\right) $ . | 2 |
| 1017 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 26 }{ 5 },~\dfrac{ 5 }{ 2 },~-\dfrac{ 9 }{ 2 }\right) $ . | 2 |
| 1018 | Find the magnitude of the vector $ \| \vec{v} \| = \left(40,~-30\right) $ . | 2 |
| 1019 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
| 1020 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 1021 | Find the difference of the vectors $ \vec{v_1} = \left(6,~9,~3\right) $ and $ \vec{v_2} = \left(1,~3,~0\right) $ . | 2 |
| 1022 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~9\right) $ and $ \vec{v_2} = \left(5,~6\right) $ . | 2 |
| 1023 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~7\right) $ and $ \vec{v_2} = \left(3,~8\right) $ . | 2 |
| 1024 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-5\right) $ . | 2 |
| 1025 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~-4\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
| 1026 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-4\right) $ and $ \vec{v_2} = \left(1,~-4\right) $ . | 2 |
| 1027 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-9,~7\right) $ and $ \vec{v_2} = \left(10,~4\right) $ . | 2 |
| 1028 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-9,~7\right) $ . | 2 |
| 1029 | Find the magnitude of the vector $ \| \vec{v} \| = \left(110,~0\right) $ . | 2 |
| 1030 | Find the projection of the vector $ \vec{v_1} = \left(1,~2\right) $ on the vector $ \vec{v_2} = \left(\dfrac{ 1 }{ 10 },~\dfrac{ 1 }{ 5 }\right) $. | 2 |
| 1031 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 81 }{ 1000 },~-\dfrac{ 327 }{ 500 }\right) $ . | 2 |
| 1032 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 2 |
| 1033 | Find the sum of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
| 1034 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~0,~3\right) $ and $ \vec{v_2} = \left(0,~3,~1\right) $ . | 2 |
| 1035 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~2\right) $ and $ \vec{v_2} = \left(3,~-6\right) $ . | 2 |
| 1036 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~8\right) $ . | 2 |
| 1037 | Find the magnitude of the vector $ \| \vec{v} \| = \left(32,~-24\right) $ . | 2 |
| 1038 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(-8,~7\right)$. | 2 |
| 1039 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1275,~2500\right) $ and $ \vec{v_2} = \left(\dfrac{ 66 }{ 5 },~\dfrac{ 41 }{ 5 }\right) $ . | 2 |
| 1040 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
| 1041 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(2,~8\right) $ . | 2 |
| 1042 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(2,~8\right)$. | 2 |
| 1043 | Find the projection of the vector $ \vec{v_1} = \left(3,~4\right) $ on the vector $ \vec{v_2} = \left(2,~8\right) $. | 2 |
| 1044 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~4\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
| 1045 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-24\right) $ and $ \vec{v_2} = \left(6,~1\right) $ . | 2 |
| 1046 | Find the angle between vectors $ \left(-2,~1\right)$ and $\left(-1,~-4\right)$. | 2 |
| 1047 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
| 1048 | Determine whether the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(-5,~11\right) $ are linearly independent or dependent. | 2 |
| 1049 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(-2,~\dfrac{ 1 }{ 4 }\right) $ . | 2 |
| 1050 | Determine whether the vectors $ \vec{v_1} = \left(-5,~-4\right) $ and $ \vec{v_2} = \left(-2,~\dfrac{ 1 }{ 4 }\right) $ are linearly independent or dependent. | 2 |