Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 301 | $$ $$ | 4 |
| 302 | $$ \displaystyle\int \dfrac{{\left({x}^{3}-{x}^{8}\right)}^{5}}{{x}^{-3}}\, \mathrm d x $$ | 4 |
| 303 | $$ $$ | 4 |
| 304 | $$ \displaystyle\int \dfrac{1}{2{x}^{2}-x-1}\, \mathrm d x $$ | 4 |
| 305 | $$ \displaystyle\int \dfrac{\dfrac{1}{{\left(2+x\right)}^{\frac{5}{2}}}{\cdot}1}{{x}^{2}}\, \mathrm d x $$ | 4 |
| 306 | $$ \displaystyle\int^{\infty}_{4} \dfrac{{x}^{2-1}{\cdot}{\mathrm{e}}^{\frac{-x}{4}}}{{4}^{2}{\cdot}1}\, \mathrm d x $$ | 4 |
| 307 | $$ \displaystyle\int^{\infty}_{4} \dfrac{\left({x}^{2}-1\right){\cdot}\dfrac{{\mathrm{e}}^{-x}}{4}}{{4}^{2}}{\cdot}1\, \mathrm d x $$ | 4 |
| 308 | $$ \displaystyle\int^{4}_{\infty} \dfrac{\dfrac{\left({x}^{2}-1\right){\cdot}{\mathrm{e}}^{-x}}{4}}{{4}^{2}}{\cdot}1\, \mathrm d x $$ | 4 |
| 309 | $$ \displaystyle\int {x}^{3}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 4 |
| 310 | $$ $$ | 4 |
| 311 | $$ $$ | 4 |
| 312 | $$ \displaystyle\int \dfrac{4.75}{x}\, \mathrm d x $$ | 4 |
| 313 | $$ $$ | 4 |
| 314 | $$ \displaystyle\int \dfrac{1}{\sqrt{x}}\, \mathrm d x $$ | 4 |
| 315 | $$ $$ | 4 |
| 316 | $$ $$ | 4 |
| 317 | $$ $$ | 4 |
| 318 | $$ $$ | 4 |
| 319 | $$ $$ | 4 |
| 320 | $$ $$ | 4 |
| 321 | $$ $$ | 4 |
| 322 | $$ $$ | 4 |
| 323 | $$ $$ | 4 |
| 324 | $$ \displaystyle\int {\left({x}^{2}+{3}^{2}\right)}^{\frac{1}{2}}+\left({\left(8-x\right)}^{2}+{7}^{2}\right){\cdot}\dfrac{1}{2}\, \mathrm d x $$ | 4 |
| 325 | $$ \displaystyle\int^{2}_{2} \dfrac{\dfrac{{x}^{2}}{8}}{x}\, \mathrm d x $$ | 4 |
| 326 | $$ \displaystyle\int \dfrac{5x}{7-x}\, \mathrm d x $$ | 4 |
| 327 | $$ \displaystyle\int \dfrac{x}{7-x}\, \mathrm d x $$ | 4 |
| 328 | $$ $$ | 4 |
| 329 | $$ $$ | 4 |
| 330 | $$ $$ | 4 |
| 331 | $$ \displaystyle\int \dfrac{18}{7-4x}+\dfrac{5}{7-4x}\, \mathrm d x $$ | 4 |
| 332 | $$ \displaystyle\int \dfrac{18}{7-4x}+\dfrac{5x}{7-4x}\, \mathrm d x $$ | 4 |
| 333 | $$ \displaystyle\int^{7}_{0} \dfrac{18}{7-4x}+\dfrac{5x}{7-4x}\, \mathrm d x $$ | 4 |
| 334 | $$ \displaystyle\int^{1}_{0} \dfrac{18}{7-4x}+\dfrac{5x}{7-4x}\, \mathrm d x $$ | 4 |
| 335 | $$ $$ | 4 |
| 336 | $$ \displaystyle\int^{\pi/4}_{\pi} \cos\left(x\right)\, \mathrm d x $$ | 4 |
| 337 | $$ \displaystyle\int^{\pi/4}_{0} \cos\left(x\right)\, \mathrm d x $$ | 4 |
| 338 | $$ \displaystyle\int \sin\left(3\right){\cdot}x{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 4 |
| 339 | $$ $$ | 4 |
| 340 | $$ $$ | 4 |
| 341 | $$ $$ | 4 |
| 342 | $$ \displaystyle\int {\left(2{x}^{2}-36x+398\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 4 |
| 343 | $$ \displaystyle\int 2{x}^{2}-36x+398\, \mathrm d x $$ | 4 |
| 344 | $$ \displaystyle\int 2{\cdot}{\left({\left(2{\cdot}\sin\left(2x\right)\right)}^{2}\right)}^{2}\, \mathrm d x $$ | 4 |
| 345 | $$ \displaystyle\int^{\pi/2}_{0} \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 4 |
| 346 | $$ \displaystyle\int^{\pi/3}_{0} \sin\left(x\right)\, \mathrm d x $$ | 4 |
| 347 | $$ $$ | 4 |
| 348 | $$ $$ | 4 |
| 349 | $$ \displaystyle\int \ln\left(\sin\left(x\right)\right)\, \mathrm d x $$ | 4 |
| 350 | $$ $$ | 4 |