Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 351 | $$ $$ | 4 |
| 352 | $$ $$ | 4 |
| 353 | $$ $$ | 4 |
| 354 | $$ $$ | 4 |
| 355 | $$ $$ | 4 |
| 356 | $$ $$ | 4 |
| 357 | $$ \displaystyle\int 0.5{\cdot}10x\, \mathrm d x $$ | 4 |
| 358 | $$ $$ | 4 |
| 359 | $$ $$ | 4 |
| 360 | $$ $$ | 4 |
| 361 | $$ $$ | 4 |
| 362 | $$ $$ | 4 |
| 363 | $$ \displaystyle\int^{2}_{1} \left(x-2\right){\cdot}\ln\left(x\right)-{x}^{2}+3x-2\, \mathrm d x $$ | 4 |
| 364 | $$ \displaystyle\int \dfrac{1}{{x}^{2}+1}\, \mathrm d x $$ | 4 |
| 365 | $$ \displaystyle\int \mathrm{e}^{2x}{\cdot}\cos\left(3x\right)\, \mathrm d x $$ | 4 |
| 366 | $$ \displaystyle\int \mathrm{e}^{2x}\, \mathrm d x $$ | 4 |
| 367 | $$ $$ | 4 |
| 368 | $$ $$ | 4 |
| 369 | $$ $$ | 4 |
| 370 | $$ $$ | 4 |
| 371 | $$ \displaystyle\int 1\, \mathrm d x $$ | 4 |
| 372 | $$ $$ | 4 |
| 373 | $$ \displaystyle\int \dfrac{-2}{1+2x}\, \mathrm d x $$ | 4 |
| 374 | $$ \displaystyle\int^{50}_{0} 0.0167{x}^{2}+3.3333x\, \mathrm d x $$ | 4 |
| 375 | $$ \displaystyle\int^{50}_{0} 0.0261{x}^{2}+3.1021x+1.1865\, \mathrm d x $$ | 4 |
| 376 | $$ $$ | 4 |
| 377 | $$ \displaystyle\int^{50}_{21} 0.0167{x}^{2}+3.3333x\, \mathrm d x $$ | 4 |
| 378 | $$ \displaystyle\int^{50}_{0} 0.0174{x}^{2}+3.2903x+0.5439\, \mathrm d x $$ | 4 |
| 379 | $$ $$ | 4 |
| 380 | $$ \displaystyle\int^{3\pi/2}_{\pi} \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 4 |
| 381 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 4 |
| 382 | $$ $$ | 4 |
| 383 | $$ $$ | 4 |
| 384 | $$ $$ | 4 |
| 385 | $$ $$ | 4 |
| 386 | $$ $$ | 4 |
| 387 | $$ $$ | 4 |
| 388 | $$ \displaystyle\int \sqrt{6+\sec\left(3x\right)}\, \mathrm d x $$ | 4 |
| 389 | $$ $$ | 4 |
| 390 | $$ $$ | 4 |
| 391 | $$ $$ | 4 |
| 392 | $$ $$ | 4 |
| 393 | $$ $$ | 4 |
| 394 | $$ \displaystyle\int \dfrac{{x}^{3}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 4 |
| 395 | $$ $$ | 4 |
| 396 | $$ \displaystyle\int \dfrac{1}{\sqrt{4{x}^{2}+9}}\, \mathrm d x $$ | 4 |
| 397 | $$ \displaystyle\int \dfrac{{x}^{3}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 4 |
| 398 | $$ \displaystyle\int 4{\cdot}\cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 4 |
| 399 | $$ \displaystyle\int^{7}_{1} x\, \mathrm d x $$ | 4 |
| 400 | $$ \displaystyle\int {t}^{\frac{1}{2}}\, \mathrm d x $$ | 4 |