Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 251 | $$ $$ | 4 |
| 252 | $$ $$ | 4 |
| 253 | $$ $$ | 4 |
| 254 | $$ $$ | 4 |
| 255 | $$ $$ | 4 |
| 256 | $$ \displaystyle\int \mathrm{e}^{-x}\, \mathrm d x $$ | 4 |
| 257 | $$ \displaystyle\int \dfrac{3x}{x}+3\, \mathrm d x $$ | 4 |
| 258 | $$ $$ | 4 |
| 259 | $$ \displaystyle\int {x}^{-1}\, \mathrm d x $$ | 4 |
| 260 | $$ \displaystyle\int x\, \mathrm d x $$ | 4 |
| 261 | $$ $$ | 4 |
| 262 | $$ \displaystyle\int \dfrac{{\left(1+\sqrt{x}\right)}^{\frac{1}{5}}}{x{x}^{\frac{9}{10}}}\, \mathrm d x $$ | 4 |
| 263 | $$ $$ | 4 |
| 264 | $$ $$ | 4 |
| 265 | $$ $$ | 4 |
| 266 | $$ $$ | 4 |
| 267 | $$ $$ | 4 |
| 268 | $$ $$ | 4 |
| 269 | $$ $$ | 4 |
| 270 | $$ $$ | 4 |
| 271 | $$ $$ | 4 |
| 272 | $$ $$ | 4 |
| 273 | $$ $$ | 4 |
| 274 | $$ \displaystyle\int {x}^{2}+3x-\dfrac{\sqrt{x}}{x}-\sqrt{x}\, \mathrm d x $$ | 4 |
| 275 | $$ $$ | 4 |
| 276 | $$ $$ | 4 |
| 277 | $$ $$ | 4 |
| 278 | $$ \displaystyle\int^{3.14}_{0} \sqrt{1+{\left(1x\right)}^{2}}\, \mathrm d x $$ | 4 |
| 279 | $$ \displaystyle\int \sqrt{5-{x}^{2}}\, \mathrm d x $$ | 4 |
| 280 | $$ \displaystyle\int^{3.14}_{0} sq{\cdot}\sqrt{t}{\cdot}\left(1+{\left(1x\right)}^{2}\right)\, \mathrm d x $$ | 4 |
| 281 | $$ \displaystyle\int \sin\left(5x\right)\, \mathrm d x $$ | 4 |
| 282 | $$ \displaystyle\int^{1}_{0} {x}^{6}{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 4 |
| 283 | $$ \displaystyle\int \sqrt{1+4{a}^{2}{x}^{2}}\, \mathrm d x $$ | 4 |
| 284 | $$ \displaystyle\int sq{\cdot}\sqrt{t}{\cdot}\left(1+18.84x\right)\, \mathrm d x $$ | 4 |
| 285 | $$ \displaystyle\int \dfrac{x}{{\left(1-{\mathrm{e}}^{-{x}^{2}}\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 4 |
| 286 | $$ \displaystyle\int^{2}_{1} \dfrac{x}{{\left(1-{\mathrm{e}}^{-{x}^{2}}\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 4 |
| 287 | $$ \displaystyle\int^{3}_{0} -480ln{\cdot}-25{\cdot}\left(x-20\right)\, \mathrm d x $$ | 4 |
| 288 | $$ \displaystyle\int \dfrac{12000}{500-25x}\, \mathrm d x $$ | 4 |
| 289 | $$ \displaystyle\int \dfrac{\sin\left(3x\right)}{\sin\left(4x\right)}\, \mathrm d x $$ | 4 |
| 290 | $$ \displaystyle\int \dfrac{1}{500-25x}\, \mathrm d x $$ | 4 |
| 291 | $$ \displaystyle\int \dfrac{{\left(1-\ln\left(\dfrac{1}{\sin\left(3x\right)}\right)\right)}^{\frac{1}{3}}}{\tan\left(3x\right)}\, \mathrm d x $$ | 4 |
| 292 | $$ $$ | 4 |
| 293 | $$ $$ | 4 |
| 294 | $$ \displaystyle\int^{10}_{0} 3{x}^{3}-2x+1\, \mathrm d x $$ | 4 |
| 295 | $$ \displaystyle\int 1\, \mathrm d x $$ | 4 |
| 296 | $$ \displaystyle\int {\left({x}^{2}-{a}^{2}\right)}^{4}\, \mathrm d x $$ | 4 |
| 297 | $$ $$ | 4 |
| 298 | $$ \displaystyle\int \dfrac{1}{{x}^{2}+4x+5}\, \mathrm d x $$ | 4 |
| 299 | $$ \displaystyle\int {x}^{\frac{2}{3}}\, \mathrm d x $$ | 4 |
| 300 | $$ $$ | 4 |