Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 201 | $$ $$ | 5 |
| 202 | $$ $$ | 5 |
| 203 | $$ $$ | 5 |
| 204 | $$ \displaystyle\int^{3}_{-1} \dfrac{14-6{x}^{2}}{4}\, \mathrm d x $$ | 4 |
| 205 | $$ \displaystyle\int \sqrt{1-{x}^{2}}\, \mathrm d x $$ | 4 |
| 206 | $$ \displaystyle\int^{8.682}_{0} {\left(-\sqrt{\dfrac{x}{10}}-\sin\left(0.5x\right)\right)}^{2}\, \mathrm d x $$ | 4 |
| 207 | $$ \displaystyle\int x{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 4 |
| 208 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{x}\, \mathrm d x $$ | 4 |
| 209 | $$ \displaystyle\int {x}^{\frac{2}{5}}\, \mathrm d x $$ | 4 |
| 210 | $$ $$ | 4 |
| 211 | $$ $$ | 4 |
| 212 | $$ $$ | 4 |
| 213 | $$ $$ | 4 |
| 214 | $$ $$ | 4 |
| 215 | $$ $$ | 4 |
| 216 | $$ $$ | 4 |
| 217 | $$ \displaystyle\int x{\cdot}\sin\left(3{x}^{2}+{\pi}\right)\, \mathrm d x $$ | 4 |
| 218 | $$ \displaystyle\int^{5}_{-5} \dfrac{1}{x}\, \mathrm d x $$ | 4 |
| 219 | $$ $$ | 4 |
| 220 | $$ $$ | 4 |
| 221 | $$ $$ | 4 |
| 222 | $$ $$ | 4 |
| 223 | $$ $$ | 4 |
| 224 | $$ $$ | 4 |
| 225 | $$ $$ | 4 |
| 226 | $$ \displaystyle\int^{\pi/2}_{-\pi/2} 2{\cdot}\csc\left(x\right)-\csc\left(x\right)\, \mathrm d x $$ | 4 |
| 227 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 4 |
| 228 | $$ $$ | 4 |
| 229 | $$ $$ | 4 |
| 230 | $$ $$ | 4 |
| 231 | $$ $$ | 4 |
| 232 | $$ $$ | 4 |
| 233 | $$ $$ | 4 |
| 234 | $$ $$ | 4 |
| 235 | $$ $$ | 4 |
| 236 | $$ $$ | 4 |
| 237 | $$ $$ | 4 |
| 238 | $$ $$ | 4 |
| 239 | $$ $$ | 4 |
| 240 | $$ $$ | 4 |
| 241 | $$ $$ | 4 |
| 242 | $$ $$ | 4 |
| 243 | $$ $$ | 4 |
| 244 | $$ $$ | 4 |
| 245 | $$ $$ | 4 |
| 246 | $$ $$ | 4 |
| 247 | $$ \displaystyle\int \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 4 |
| 248 | $$ $$ | 4 |
| 249 | $$ $$ | 4 |
| 250 | $$ $$ | 4 |