Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1701 | $$ $$ | 2 |
| 1702 | $$ \displaystyle\int \cos\left(\dfrac{n{\cdot}{\pi}{\cdot}x}{10}\right){\cdot}\cos\left({\pi}{\cdot}x\right)\, \mathrm d x $$ | 2 |
| 1703 | $$ \displaystyle\int^{10}_{0} \cos\left(\dfrac{n{\cdot}{\pi}{\cdot}x}{10}\right){\cdot}\cos\left({\pi}{\cdot}x\right)\, \mathrm d x $$ | 2 |
| 1704 | $$ $$ | 2 |
| 1705 | $$ $$ | 2 |
| 1706 | $$ \displaystyle\int^{1}_{0} \dfrac{3{x}^{3}-{x}^{2}-2x+4}{\sqrt{{x}^{2}-3x+2}}\, \mathrm d x $$ | 2 |
| 1707 | $$ \displaystyle\int x\,rb1=indef $$ | 2 |
| 1708 | $$ \displaystyle\int^{7}_{3} 3+5x\, \mathrm d x $$ | 2 |
| 1709 | $$ \displaystyle\int 324\, \mathrm d x $$ | 2 |
| 1710 | $$ \displaystyle\int \tan\left(456\right)\, \mathrm d x $$ | 2 |
| 1711 | $$ \displaystyle\int {x}^{2}+4x-2\, \mathrm d x $$ | 2 |
| 1712 | $$ \displaystyle\int \ln\left(1+{x}^{3}\right)\, \mathrm d x $$ | 2 |
| 1713 | $$ \displaystyle\int fx{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
| 1714 | $$ \displaystyle\int \dfrac{3x+2}{{x}^{2}-x+2}\, \mathrm d x $$ | 2 |
| 1715 | $$ \displaystyle\int \dfrac{{x}^{5}}{\sqrt{1-{x}^{4}}}\, \mathrm d x $$ | 2 |
| 1716 | $$ $$ | 2 |
| 1717 | $$ \displaystyle\int {x}^{2}+3x-4\, \mathrm d x $$ | 2 |
| 1718 | $$ \displaystyle\int^{\pi/5}_{0} {\left(\sin\left(5x\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1719 | $$ \displaystyle\int^{2}_{1} {x}^{2}\, \mathrm d x $$ | 2 |
| 1720 | $$ \displaystyle\int^{4}_{1} 2-\dfrac{\sqrt{x}}{{x}^{2}}\, \mathrm d x $$ | 2 |
| 1721 | $$ \displaystyle\int^{4}_{1} \dfrac{\sqrt{t}}{{x}^{2}}\, \mathrm d x $$ | 2 |
| 1722 | $$ \displaystyle\int \dfrac{1}{4{x}^{2}+1}\, \mathrm d x $$ | 2 |
| 1723 | $$ \displaystyle\int \dfrac{6x+1}{\sqrt{3x-4}}\, \mathrm d x $$ | 2 |
| 1724 | $$ \displaystyle\int \dfrac{\sqrt{25-4{x}^{2}}}{x}\, \mathrm d x $$ | 2 |
| 1725 | $$ \displaystyle\int {x}^{3}{\cdot}{\mathrm{e}}^{2x}\, \mathrm d x $$ | 2 |
| 1726 | $$ \displaystyle\int \tan\left(6\right){\cdot}{x}^{3}{\cdot}{\left(\sqrt{x}\right)}^{4}-2\, \mathrm d x $$ | 2 |
| 1727 | $$ \displaystyle\int \left(x+1\right){\cdot}\sqrt{{x}^{2}+2x}\, \mathrm d x $$ | 2 |
| 1728 | $$ \displaystyle\int \dfrac{\sin\left(3x\right)}{1+\cos\left(x\right){\cdot}\cos\left(x\right)}\, \mathrm d x $$ | 2 |
| 1729 | $$ \displaystyle\int \dfrac{1}{{x}^{3}}-15{x}^{2}+48x+64\, \mathrm d x $$ | 2 |
| 1730 | $$ \displaystyle\int \dfrac{1}{{x}^{3}-15{x}^{2}+48x+64}\, \mathrm d x $$ | 2 |
| 1731 | $$ $$ | 2 |
| 1732 | $$ \displaystyle\int^{3}_{8} \dfrac{4}{5-sq{\cdot}\sqrt{t}{\cdot}\left(1-x\right)}\, \mathrm d x $$ | 2 |
| 1733 | $$ \displaystyle\int^{8}_{3} \dfrac{4}{5-\sqrt{1-x}}\, \mathrm d x $$ | 2 |
| 1734 | $$ \displaystyle\int 4x-3{\cdot}\sin\left(3x\right)\, \mathrm d x $$ | 2 |
| 1735 | $$ $$ | 2 |
| 1736 | $$ \displaystyle\int \sin\left(\dfrac{1}{2}\right){\cdot}x\, \mathrm d x $$ | 2 |
| 1737 | $$ $$ | 2 |
| 1738 | $$ \displaystyle\int^{4\pi}_{0} \dfrac{\cos\left(6x\right)}{5-3{\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 2 |
| 1739 | $$ $$ | 2 |
| 1740 | $$ \displaystyle\int 11-x-\dfrac{{x}^{2}}{x-1}{\cdot}{\left(x-2\right)}^{2}\, \mathrm d x $$ | 2 |
| 1741 | $$ \displaystyle\int^{0}_{\pi} \sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1742 | $$ \displaystyle\int^{\pi/3}_{\pi/6} \dfrac{\cos\left(4x\right)}{\sin\left(2x\right){\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 2 |
| 1743 | $$ \displaystyle\int^{1}_{0} {x}^{1.5}{\cdot}{\left(1-x\right)}^{0.5}\, \mathrm d x $$ | 2 |
| 1744 | $$ $$ | 2 |
| 1745 | $$ $$ | 2 |
| 1746 | $$ $$ | 2 |
| 1747 | $$ $$ | 2 |
| 1748 | $$ \displaystyle\int {\mathrm{e}}^{\frac{1}{x}}\, \mathrm d x $$ | 2 |
| 1749 | $$ \displaystyle\int \sin\left(a+x\right)\, \mathrm d x $$ | 2 |
| 1750 | $$ \displaystyle\int \ln\left(x\right)\, \mathrm d x $$ | 2 |