Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1651 | $$ $$ | 2 |
| 1652 | $$ \displaystyle\int \ln\left(x+2\right)\, \mathrm d x $$ | 2 |
| 1653 | $$ \displaystyle\int^{2}_{-4} 3{x}^{2}-4x-16\, \mathrm d x $$ | 2 |
| 1654 | $$ $$ | 2 |
| 1655 | $$ $$ | 2 |
| 1656 | $$ $$ | 2 |
| 1657 | $$ \displaystyle\int \dfrac{{x}^{2}}{x-7}\, \mathrm d x $$ | 2 |
| 1658 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{\sqrt{x}}}{\sqrt{x}}\, \mathrm d x $$ | 2 |
| 1659 | $$ $$ | 2 |
| 1660 | $$ $$ | 2 |
| 1661 | $$ $$ | 2 |
| 1662 | $$ \displaystyle\int {x}^{2}+3{x}^{4}+\sin\left(x\right)+{4}^{x}\, \mathrm d x $$ | 2 |
| 1663 | $$ $$ | 2 |
| 1664 | $$ \displaystyle\int \cos\left(5x\right)\, \mathrm d x $$ | 2 |
| 1665 | $$ $$ | 2 |
| 1666 | $$ $$ | 2 |
| 1667 | $$ $$ | 2 |
| 1668 | $$ $$ | 2 |
| 1669 | $$ $$ | 2 |
| 1670 | $$ $$ | 2 |
| 1671 | $$ $$ | 2 |
| 1672 | $$ $$ | 2 |
| 1673 | $$ $$ | 2 |
| 1674 | $$ $$ | 2 |
| 1675 | $$ $$ | 2 |
| 1676 | $$ $$ | 2 |
| 1677 | $$ $$ | 2 |
| 1678 | $$ $$ | 2 |
| 1679 | $$ $$ | 2 |
| 1680 | $$ $$ | 2 |
| 1681 | $$ \displaystyle\int \dfrac{1}{\ln\left(x\right)}\, \mathrm d x $$ | 2 |
| 1682 | $$ $$ | 2 |
| 1683 | $$ \displaystyle\int \dfrac{1}{{3}^{\ln\left(x\right)}}\, \mathrm d x $$ | 2 |
| 1684 | $$ \displaystyle\int \dfrac{3{x}^{2}-10}{{x}^{2}-4x-4}\, \mathrm d x $$ | 2 |
| 1685 | $$ $$ | 2 |
| 1686 | $$ $$ | 2 |
| 1687 | $$ $$ | 2 |
| 1688 | $$ $$ | 2 |
| 1689 | $$ \displaystyle\int \ln\left(x+\sqrt{{x}^{2}-1}\right)\, \mathrm d x $$ | 2 |
| 1690 | $$ \displaystyle\int \dfrac{1}{{\left({x}^{4}+1\right)}^{\frac{1}{4}}}\, \mathrm d x $$ | 2 |
| 1691 | $$ $$ | 2 |
| 1692 | $$ \displaystyle\int^{8}_{0} 15.662{\mathrm{e}}^{-0.172}\, \mathrm d x $$ | 2 |
| 1693 | $$ \displaystyle\int^{8}_{0} 13.865{\mathrm{e}}^{-0.05}\, \mathrm d x $$ | 2 |
| 1694 | $$ \displaystyle\int \sqrt{x}{\cdot}\left(x+1\right)\, \mathrm d x $$ | 2 |
| 1695 | $$ $$ | 2 |
| 1696 | $$ \displaystyle\int \sqrt{{x}^{2}-2x+1}\, \mathrm d x $$ | 2 |
| 1697 | $$ \int^{2}_{-1} \frac{{x}}{{3}}{x}+\frac{{2}^{{2}}}{{3}} \, d\,x $$ | 2 |
| 1698 | $$ \displaystyle\int^{1}_{----1} 1-{x}^{2}\, \mathrm d x $$ | 2 |
| 1699 | $$ \displaystyle\int \sin\left(\dfrac{{\pi}{\cdot}{\mathrm{e}}^{x}}{2}\right)\, \mathrm d x $$ | 2 |
| 1700 | $$ \displaystyle\int^{2\pi}_{0} \sqrt{{\left(1+\sin\left(x\right)\right)}^{2}+{\left(\cos\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |