Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1751 | $$ \int {1}\cdot{000143}{\exp{{\left({\cos{{\left({80}\right)}}}\right)}}} \, d\,x $$ | 2 |
| 1752 | $$ \displaystyle\int^{3}_{0} \sqrt{x}+{x}^{\frac{1}{5}}+{x}^{\frac{1}{9}}\, \mathrm d x $$ | 2 |
| 1753 | $$ \displaystyle\int^{8}_{4} {\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
| 1754 | $$ $$ | 2 |
| 1755 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{\sqrt{3x+1}}\, \mathrm d x $$ | 2 |
| 1756 | $$ $$ | 2 |
| 1757 | $$ $$ | 2 |
| 1758 | $$ \displaystyle\int \dfrac{\sqrt{x}+1}{x}\, \mathrm d x $$ | 2 |
| 1759 | $$ $$ | 2 |
| 1760 | $$ $$ | 2 |
| 1761 | $$ \displaystyle\int \cos\left(x\right){\cdot}{\mathrm{e}}^{-i{\cdot}ax}\, \mathrm d x $$ | 2 |
| 1762 | $$ $$ | 2 |
| 1763 | $$ $$ | 2 |
| 1764 | $$ $$ | 2 |
| 1765 | $$ $$ | 2 |
| 1766 | $$ \displaystyle\int \ln\left(x+1\right){\cdot}\cos\left(\dfrac{x}{2}\right)\, \mathrm d x $$ | 2 |
| 1767 | $$ \displaystyle\int \ln\left(x+1\right){\cdot}\cos\left(\dfrac{3x}{2}\right)\, \mathrm d x $$ | 2 |
| 1768 | $$ \displaystyle\int \ln\left(x+1\right){\cdot}\sin\left(\dfrac{x}{2}\right)\, \mathrm d x $$ | 2 |
| 1769 | $$ \displaystyle\int \ln\left(x+1\right){\cdot}\sin\left(\dfrac{3x}{2}\right)\, \mathrm d x $$ | 2 |
| 1770 | $$ \displaystyle\int \dfrac{1}{rx+{x}^{3}}\, \mathrm d x $$ | 2 |
| 1771 | $$ $$ | 2 |
| 1772 | $$ $$ | 2 |
| 1773 | $$ $$ | 2 |
| 1774 | $$ $$ | 2 |
| 1775 | $$ $$ | 2 |
| 1776 | $$ $$ | 2 |
| 1777 | $$ $$ | 2 |
| 1778 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\left(5000-x\right)}\, \mathrm d x $$ | 2 |
| 1779 | $$ \displaystyle\int \dfrac{x}{x+1}\, \mathrm d x $$ | 2 |
| 1780 | $$ $$ | 2 |
| 1781 | $$ $$ | 2 |
| 1782 | $$ \displaystyle\int^{4}_{1} 2{x}^{2}-2x\, \mathrm d x $$ | 2 |
| 1783 | $$ \displaystyle\int^{6}_{4+2^0.5} \sqrt{\dfrac{4{x}^{2}}{{\left(x-4\right)}^{2}}-{x}^{2}}\, \mathrm d x $$ | 2 |
| 1784 | $$ \displaystyle\int^{6}_{4+2^1/2} sqsq{\cdot}\sqrt{t}{\cdot}t{\cdot}\left(\dfrac{4{x}^{2}}{{\left(x-4\right)}^{2}}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1785 | $$ \displaystyle\int^{6}_{4+1.41} sqsqsq{\cdot}\sqrt{t}{\cdot}tt{\cdot}\left(\dfrac{4{x}^{2}}{{\left(x-4\right)}^{2}}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1786 | $$ \displaystyle\int^{6}_{5.41} \sqrt{\dfrac{4{x}^{2}}{{\left(x-4\right)}^{2}}-{x}^{2}}\, \mathrm d x $$ | 2 |
| 1787 | $$ \displaystyle\int^{6}_{4+1.41} \sqrt{\dfrac{4{x}^{2}}{{\left(x-4\right)}^{2}}-{x}^{2}}\, \mathrm d x $$ | 2 |
| 1788 | $$ $$ | 2 |
| 1789 | $$ $$ | 2 |
| 1790 | $$ \displaystyle\int {x}^{4}{\cdot}{\left(2+\dfrac{3}{x}\right)}^{4}\, \mathrm d x $$ | 2 |
| 1791 | $$ \displaystyle\int \dfrac{x-3}{3{x}^{2}+2x-5}\, \mathrm d x $$ | 2 |
| 1792 | $$ $$ | 2 |
| 1793 | $$ \displaystyle\int \dfrac{1}{{\left(1+x\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1794 | $$ \displaystyle\int \dfrac{1}{{\left(1-x\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1795 | $$ $$ | 2 |
| 1796 | $$ $$ | 2 |
| 1797 | $$ \displaystyle\int \dfrac{1}{1+{x}^{3}}\, \mathrm d x $$ | 2 |
| 1798 | $$ \displaystyle\int \ln\left(x\right){\cdot}\sin\left({c}^{\frac{1}{2}}{\cdot}x\right)\, \mathrm d x $$ | 2 |
| 1799 | $$ $$ | 2 |
| 1800 | $$ $$ | 2 |