Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1601 | $$ \displaystyle\int 3{x}^{2}+4x\, \mathrm d x $$ | 2 |
| 1602 | $$ \displaystyle\int 2{\cdot}\sin\left(x\right){\cdot}\sqrt{2{\cdot}{\left(\sin\left(x\right)\right)}^{2}+3{\cdot}{\left(\cos\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1603 | $$ \displaystyle\int^{2}_{1} {\left({x}^{2}+2\right)}^{\frac{3}{2}}{\cdot}\left({x}^{2}+1\right)\, \mathrm d x $$ | 2 |
| 1604 | $$ \int {x}\cdot{\ln{{\left(-{x}^{{2}}\right)}}} \, d\,x $$ | 2 |
| 1605 | $$ \displaystyle\int^{1}_{0} 6x{\cdot}{\left(1-{x}^{2}\right)}^{2}\, \mathrm d x $$ | 2 |
| 1606 | $$ \displaystyle\int -\ln\left(3-x\right)\, \mathrm d x $$ | 2 |
| 1607 | $$ \displaystyle\int^{0.01}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 2 |
| 1608 | $$ \displaystyle\int {x}^{2}+1\, \mathrm d x $$ | 2 |
| 1609 | $$ $$ | 2 |
| 1610 | $$ $$ | 2 |
| 1611 | $$ $$ | 2 |
| 1612 | $$ $$ | 2 |
| 1613 | $$ $$ | 2 |
| 1614 | $$ $$ | 2 |
| 1615 | $$ $$ | 2 |
| 1616 | $$ $$ | 2 |
| 1617 | $$ $$ | 2 |
| 1618 | $$ $$ | 2 |
| 1619 | $$ $$ | 2 |
| 1620 | $$ $$ | 2 |
| 1621 | $$ $$ | 2 |
| 1622 | $$ $$ | 2 |
| 1623 | $$ $$ | 2 |
| 1624 | $$ $$ | 2 |
| 1625 | $$ $$ | 2 |
| 1626 | $$ \displaystyle\int {\mathrm{e}}^{x}\, \mathrm d x $$ | 2 |
| 1627 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right){\cdot}{x}^{2}\, \mathrm d x $$ | 2 |
| 1628 | $$ $$ | 2 |
| 1629 | $$ $$ | 2 |
| 1630 | $$ $$ | 2 |
| 1631 | $$ $$ | 2 |
| 1632 | $$ $$ | 2 |
| 1633 | $$ $$ | 2 |
| 1634 | $$ $$ | 2 |
| 1635 | $$ $$ | 2 |
| 1636 | $$ $$ | 2 |
| 1637 | $$ $$ | 2 |
| 1638 | $$ $$ | 2 |
| 1639 | $$ $$ | 2 |
| 1640 | $$ $$ | 2 |
| 1641 | $$ \displaystyle\int^{6}_{4} 3{x}^{2}-12x-15\, \mathrm d x $$ | 2 |
| 1642 | $$ \displaystyle\int^{\pi}_{0} 18{\pi}{\cdot}\left(4-x\right){\cdot}\sqrt{\sin\left(x\right)}\, \mathrm d x $$ | 2 |
| 1643 | $$ \displaystyle\int \dfrac{1}{{x}^{2}{\cdot}{\left(1-x\right)}^{5}}\, \mathrm d x $$ | 2 |
| 1644 | $$ $$ | 2 |
| 1645 | $$ $$ | 2 |
| 1646 | $$ $$ | 2 |
| 1647 | $$ \displaystyle\int \dfrac{7{\mathrm{e}}^{x}-2}{{\left({\mathrm{e}}^{x}-2\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1648 | $$ \displaystyle\int \dfrac{15}{x}\, \mathrm d x $$ | 2 |
| 1649 | $$ \displaystyle\int x-1\, \mathrm d x $$ | 2 |
| 1650 | $$ $$ | 2 |