Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1551 | $$ \displaystyle\int \dfrac{8{\cdot}\left(x-1\right)}{\sqrt{{\left(2x-1\right)}^{3}}}\, \mathrm d x $$ | 2 |
| 1552 | $$ \displaystyle\int \sqrt{2}{\cdot}x\, \mathrm d x $$ | 2 |
| 1553 | $$ \displaystyle\int sq{\cdot}\sqrt{t}{\cdot}\left({x}^{2}-ax\right)\, \mathrm d x $$ | 2 |
| 1554 | $$ \displaystyle\int \dfrac{1}{{\left(3{x}^{2}+1\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 2 |
| 1555 | $$ \displaystyle\int {\left(50+25{\cdot}\cos\left(x\right)\right)}^{0.5}\, \mathrm d x $$ | 2 |
| 1556 | $$ \displaystyle\int^{2\pi}_{0} {\left(50+25{\cdot}\cos\left(x\right)\right)}^{0.5}\, \mathrm d x $$ | 2 |
| 1557 | $$ \displaystyle\int^{\pi}_{\pi/2} {\pi}-x\, \mathrm d x $$ | 2 |
| 1558 | $$ \displaystyle\int^{\pi}_{--\pi} \cos\left(x\right)\, \mathrm d x $$ | 2 |
| 1559 | $$ \displaystyle\int^{2}_{----1} {x}^{4}\, \mathrm d x $$ | 2 |
| 1560 | $$ \displaystyle\int^{2}_{1.414} \dfrac{x}{{x}^{2}-1}\, \mathrm d x $$ | 2 |
| 1561 | $$ \displaystyle\int^{0}_{\pi/6} \dfrac{\cos\left(x\right)}{1+2{\cdot}\sin\left(x\right)}\, \mathrm d x $$ | 2 |
| 1562 | $$ \displaystyle\int^{\pi/6}_{0} \dfrac{\cos\left(x\right)}{1+2{\cdot}\sin\left(x\right)}\, \mathrm d x $$ | 2 |
| 1563 | $$ \displaystyle\int^{1/6}_{0} \dfrac{1}{\sqrt{1-9{x}^{2}}}\, \mathrm d x $$ | 2 |
| 1564 | $$ \displaystyle\int^{e}_{1} x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 2 |
| 1565 | $$ \displaystyle\int^{\pi/2}_{0} x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1566 | $$ \displaystyle\int {\left(2{\cdot}\sin\left(x\right)-\sin\left(2\right){\cdot}x\right)}^{2}\, \mathrm d x $$ | 2 |
| 1567 | $$ \displaystyle\int^{9}_{0} {\left(\sec\left(x\right)\right)}^{3}\, \mathrm d x $$ | 2 |
| 1568 | $$ \displaystyle\int 5{\cdot}\cos\left(60{\pi}{\cdot}t\right)\, \mathrm d x $$ | 2 |
| 1569 | $$ \displaystyle\int -4{\cdot}\left({x}^{3}+1\right){\cdot}{\left(x-3\right)}^{2}\, \mathrm d x $$ | 2 |
| 1570 | $$ \displaystyle\int^{\infty}_{3} \dfrac{1}{x{\cdot}{\left(\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1571 | $$ \displaystyle\int^{\infty}_{1} \dfrac{x}{{\left(1+{x}^{2}\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1572 | $$ \displaystyle\int^{\infty}_{1} x{\cdot}{\mathrm{e}}^{-{x}^{2}}\, \mathrm d x $$ | 2 |
| 1573 | $$ \displaystyle\int 20{\cdot}\cos\left(10t+\dfrac{{\pi}}{6}\right)\, \mathrm d x $$ | 2 |
| 1574 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\cos\left(\dfrac{x}{2}\right)\right)}^{2}\, \mathrm d x $$ | 2 |
| 1575 | $$ \displaystyle\int^{\pi}_{0} {\mathrm{e}}^{\cos\left(x\right)}{\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 2 |
| 1576 | $$ $$ | 2 |
| 1577 | $$ \displaystyle\int \sqrt{1+{x}^{2}}{\cdot}\sqrt{\sqrt{1+{x}^{4}}}\, \mathrm d x $$ | 2 |
| 1578 | $$ $$ | 2 |
| 1579 | $$ $$ | 2 |
| 1580 | $$ $$ | 2 |
| 1581 | $$ \displaystyle\int^{e}_{1} \ln\left(7x\right)\, \mathrm d x $$ | 2 |
| 1582 | $$ \displaystyle\int^{9}_{3} \sqrt{1+x{\cdot}{\left({x}^{2}+2\right)}^{\frac{1}{2}}}\, \mathrm d x $$ | 2 |
| 1583 | $$ $$ | 2 |
| 1584 | $$ \displaystyle\int \mathrm{e}+1\, \mathrm d x $$ | 2 |
| 1585 | $$ \displaystyle\int {x}^{\frac{3}{2}}\, \mathrm d x $$ | 2 |
| 1586 | $$ \displaystyle\int \dfrac{1}{2}{\cdot}x\, \mathrm d x $$ | 2 |
| 1587 | $$ \displaystyle\int \dfrac{2}{9}\, \mathrm d x $$ | 2 |
| 1588 | $$ \displaystyle\int \dfrac{2x}{9}\, \mathrm d x $$ | 2 |
| 1589 | $$ \displaystyle\int \dfrac{1}{1+\mathrm{e}{\cdot}x}\, \mathrm d x $$ | 2 |
| 1590 | $$ \displaystyle\int^{2}_{1/2} 1+{\left(\dfrac{{x}^{2}}{2}-\dfrac{1}{2{x}^{2}}\right)}^{2}\, \mathrm d x $$ | 2 |
| 1591 | $$ $$ | 2 |
| 1592 | $$ $$ | 2 |
| 1593 | $$ $$ | 2 |
| 1594 | $$ $$ | 2 |
| 1595 | $$ $$ | 2 |
| 1596 | $$ \displaystyle\int^{\infty}_{0} \sqrt{x-2}{\cdot}{\mathrm{e}}^{\frac{-{\left(x-2\right)}^{3}}{5}}\, \mathrm d x $$ | 2 |
| 1597 | $$ \displaystyle\int^{2}_{1} x{\cdot}\left(1+\dfrac{1}{x}-x\right)\, \mathrm d x $$ | 2 |
| 1598 | $$ \displaystyle\int^{4}_{0} \dfrac{12}{\sqrt{6x+1}}\, \mathrm d x $$ | 2 |
| 1599 | $$ \displaystyle\int^{2}_{----2} \dfrac{9}{s}{\cdot}q{\cdot}\sqrt{t}{\cdot}\left(5-2x\right)\, \mathrm d x $$ | 2 |
| 1600 | $$ \displaystyle\int^{2}_{0} {x}^{2}\, \mathrm d x $$ | 2 |