Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5301 | $$ $$ | 1 |
| 5302 | $$ $$ | 1 |
| 5303 | $$ $$ | 1 |
| 5304 | $$ $$ | 1 |
| 5305 | $$ $$ | 1 |
| 5306 | $$ \displaystyle\int {\mathrm{e}}^{\sin\left(x\right)}{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 5307 | $$ \displaystyle\int \sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 5308 | $$ \displaystyle\int {x}^{2}+4x-2\, \mathrm d x $$ | 1 |
| 5309 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\dfrac{{x}^{4}+2}{{\left(1+{x}^{2}\right)}^{\frac{5}{2}}}\, \mathrm d x $$ | 1 |
| 5310 | $$ \displaystyle\int^{4}_{0} \left(4-sq{\cdot}\sqrt{t}{\cdot}x\right){\cdot}sq{\cdot}\sqrt{t}{\cdot}\left(1+\dfrac{1}{4x}\right)\, \mathrm d x $$ | 1 |
| 5311 | $$ \displaystyle\int^{4}_{0} \left(4-\sqrt{x}\right){\cdot}\sqrt{1+\dfrac{1}{4x}}\, \mathrm d x $$ | 1 |
| 5312 | $$ \displaystyle\int \dfrac{{x}^{2}}{x+1}{\cdot}\left({x}^{2}+1\right)\, \mathrm d x $$ | 1 |
| 5313 | $$ \displaystyle\int \dfrac{{x}^{2}}{\left(x+1\right){\cdot}\left({x}^{2}+1\right)}\, \mathrm d x $$ | 1 |
| 5314 | $$ \displaystyle\int {x}^{0.8}-\sin\left(2x-5\right)\, \mathrm d x $$ | 1 |
| 5315 | $$ \displaystyle\int \dfrac{1}{\sin\left(\color{orangered}{\square}\right)}\, \mathrm d x $$ | 1 |
| 5316 | $$ $$ | 1 |
| 5317 | $$ $$ | 1 |
| 5318 | $$ $$ | 1 |
| 5319 | $$ \displaystyle\int 988{\cdot}\sqrt{\sin\left(\sin\left(\ln\left(\ln\left(\mathrm{e}\right)\right)\right)\right)}\, \mathrm d x $$ | 1 |
| 5320 | $$ \displaystyle\int^{\pi/4}_{0} \dfrac{1}{2}{\cdot}{\left(4.8717{\cdot}\sin\left(5x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 5321 | $$ \displaystyle\int^{\pi/4}_{0} {\left(\sin\left(5x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 5322 | $$ \displaystyle\int \sqrt{9-{x}^{2}}\, \mathrm d x $$ | 1 |
| 5323 | $$ \displaystyle\int^{2}_{1} x\, \mathrm d x $$ | 1 |
| 5324 | $$ \displaystyle\int^{4}_{1} \dfrac{sq{\cdot}\sqrt{t}{\cdot}t}{{x}^{2}}\, \mathrm d x $$ | 1 |
| 5325 | $$ $$ | 1 |
| 5326 | $$ $$ | 1 |
| 5327 | $$ $$ | 1 |
| 5328 | $$ $$ | 1 |
| 5329 | $$ \displaystyle\int^{5}_{1} 5x\, \mathrm d x $$ | 1 |
| 5330 | $$ \displaystyle\int^{1}_{0} {\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
| 5331 | $$ \displaystyle\int {x}^{7}{\cdot}{\mathrm{e}}^{3{x}^{4}}\, \mathrm d x $$ | 1 |
| 5332 | $$ $$ | 1 |
| 5333 | $$ $$ | 1 |
| 5334 | $$ $$ | 1 |
| 5335 | $$ $$ | 1 |
| 5336 | $$ $$ | 1 |
| 5337 | $$ $$ | 1 |
| 5338 | $$ $$ | 1 |
| 5339 | $$ $$ | 1 |
| 5340 | $$ $$ | 1 |
| 5341 | $$ $$ | 1 |
| 5342 | $$ $$ | 1 |
| 5343 | $$ $$ | 1 |
| 5344 | $$ $$ | 1 |
| 5345 | $$ \displaystyle\int \dfrac{4}{5-\sqrt{1-x}}\, \mathrm d x $$ | 1 |
| 5346 | $$ \displaystyle\int^{8}_{3} \dfrac{4}{5-sq{\cdot}\sqrt{t}{\cdot}\left(1-x\right)}\, \mathrm d x $$ | 1 |
| 5347 | $$ \int^{1}_{0} \frac{{\sin{{\left({x}\right)}}}}{{x}^{{2}}} \, d\,x $$ | 1 |
| 5348 | $$ \int^{1}_{0} \frac{{\sin{{\left({x}\right)}}}}{{x}} \, d\,x $$ | 1 |
| 5349 | $$ \int^{1}_{0} {\sin{{\left({x}\right)}}}+{x}^{{3}} \, d\,x $$ | 1 |
| 5350 | $$ $$ | 1 |