Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5251 | $$ \displaystyle\int {\left(5x+3\right)}^{3}\, \mathrm d x $$ | 1 |
| 5252 | $$ \displaystyle\int {\left(5x\right)}^{3}\, \mathrm d x $$ | 1 |
| 5253 | $$ \displaystyle\int \dfrac{6}{2x-3}\, \mathrm d x $$ | 1 |
| 5254 | $$ \displaystyle\int \dfrac{6x}{2{x}^{2}-3}\, \mathrm d x $$ | 1 |
| 5255 | $$ $$ | 1 |
| 5256 | $$ $$ | 1 |
| 5257 | $$ \displaystyle\int^{10}_{2} \dfrac{1}{2}{\cdot}{x}^{2}-6x\, \mathrm d x $$ | 1 |
| 5258 | $$ \displaystyle\int^{10}_{2} \dfrac{1}{2}{\cdot}{x}^{2}-6x+18\, \mathrm d x $$ | 1 |
| 5259 | $$ \displaystyle\int \dfrac{1}{{x}^{2}+4}\, \mathrm d x $$ | 1 |
| 5260 | $$ \displaystyle\int^{4}_{2} \dfrac{1}{2}{\cdot}{x}^{2}-6x+16\, \mathrm d x $$ | 1 |
| 5261 | $$ \displaystyle\int \dfrac{-\ln\left(1+x\right)}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 5262 | $$ \displaystyle\int^{1}_{0} \dfrac{-\ln\left(1+x\right)}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 5263 | $$ $$ | 1 |
| 5264 | $$ $$ | 1 |
| 5265 | $$ $$ | 1 |
| 5266 | $$ $$ | 1 |
| 5267 | $$ $$ | 1 |
| 5268 | $$ $$ | 1 |
| 5269 | $$ $$ | 1 |
| 5270 | $$ $$ | 1 |
| 5271 | $$ $$ | 1 |
| 5272 | $$ \displaystyle\int^{\pi}_{0} \dfrac{2}{{\pi}}{\cdot}{\left(\sin\left(x\right)\right)}^{2}{\cdot}\sin\left(nx\right)\, \mathrm d x $$ | 1 |
| 5273 | $$ \displaystyle\int 1-{\mathrm{e}}^{-t}\, \mathrm d x $$ | 1 |
| 5274 | $$ \displaystyle\int 1-{\mathrm{e}}^{-t}\, \mathrm d x $$ | 1 |
| 5275 | $$ \displaystyle\int^{\pi/2}_{0} \ln\left(\tan\left(x\right)\right)\, \mathrm d x $$ | 1 |
| 5276 | $$ \displaystyle\int \dfrac{3}{3-x}\, \mathrm d x $$ | 1 |
| 5277 | $$ $$ | 1 |
| 5278 | $$ $$ | 1 |
| 5279 | $$ $$ | 1 |
| 5280 | $$ \int \frac{{7}}{{\left({8}-{x}\right)}^{{4}}} \, d\,x $$ | 1 |
| 5281 | $$ \int {\left({2}{x}-{1}\right)}^{{3}} \, d\,x $$ | 1 |
| 5282 | $$ \int {\left({2}{x}-{1}\right)}^{{5}} \, d\,x $$ | 1 |
| 5283 | $$ \displaystyle\int {\mathrm{e}}^{-{t}^{3}}\, \mathrm d x $$ | 1 |
| 5284 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right)\, \mathrm d x $$ | 1 |
| 5285 | $$ \displaystyle\int \dfrac{1-2x}{{x}^{3}}\, \mathrm d x $$ | 1 |
| 5286 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{-2}{\cdot}x}{\dfrac{1{\cdot}1}{5}}\, \mathrm d x $$ | 1 |
| 5287 | $$ \displaystyle\int 6{\mathrm{e}}^{3x}\, \mathrm d x $$ | 1 |
| 5288 | $$ \displaystyle\int {3}^{3x}{\cdot}{3}^{x}\, \mathrm d x $$ | 1 |
| 5289 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\sqrt{{x}^{2}-1}}\, \mathrm d x $$ | 1 |
| 5290 | $$ \displaystyle\int \cos\left(8\right){\cdot}{\mathrm{e}}^{0.2}{\cdot}x\, \mathrm d x $$ | 1 |
| 5291 | $$ \displaystyle\int^{3}_{0} 65+24{\cdot}\sin\left(0.3x\right)\, \mathrm d x $$ | 1 |
| 5292 | $$ \displaystyle\int^{4}_{0} 2{\cdot}{\left(1+5{x}^{3}\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
| 5293 | $$ \displaystyle\int^{3}_{1} {x}^{2}-2\, \mathrm d x $$ | 1 |
| 5294 | $$ \displaystyle\int 20000{\mathrm{e}}^{-0.12x}\, \mathrm d x $$ | 1 |
| 5295 | $$ \displaystyle\int^{12}_{0} 20000{\mathrm{e}}^{-0.12x}\, \mathrm d x $$ | 1 |
| 5296 | $$ $$ | 1 |
| 5297 | $$ \displaystyle\int \dfrac{x{\cdot}{\mathrm{e}}^{x}}{{\left(1+x\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5298 | $$ \displaystyle\int^{4\pi}_{0} {\mathrm{e}}^{2x}{\cdot}\left(2+2{\cdot}\sin\left(2x\right)\right)\, \mathrm d x $$ | 1 |
| 5299 | $$ \displaystyle\int^{2.5}_{0} \sin\left({x}^{2}\right)\, \mathrm d x $$ | 1 |
| 5300 | $$ $$ | 1 |