Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1 | $$ \displaystyle\int \dfrac{\cos\left(4x\right)}{\sin\left(2x\right){\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 628 |
| 2 | $$ $$ | 149 |
| 3 | $$ \displaystyle\int {x}^{2}+3x-1\, \mathrm d x $$ | 74 |
| 4 | $$ \displaystyle\int \dfrac{1}{1+{x}^{4}}\, \mathrm d x $$ | 57 |
| 5 | $$ $$ | 29 |
| 6 | $$ \displaystyle\int 2{\cdot}\cot\left(4x\right)\, \mathrm d x $$ | 23 |
| 7 | $$ $$ | 21 |
| 8 | $$ \displaystyle\int^{\pi/3}_{\pi/6} \dfsqrtac{\cos\left(4x\sqrtight)}{\sin\left(2x\sqrtight){\cdot}\cos\left(2x\sqrtight)}\, \mathsqrtm d x $$ | 21 |
| 9 | $$ \displaystyle\int {x}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 19 |
| 10 | $$ \displaystyle\int+\dfrac{1}{1+{x}^{4}}\,+\mathrm+d+x $$ | 18 |
| 11 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{1+{x}^{6}}\, \mathrm d x $$ | 18 |
| 12 | $$ \displaystyle\int {x}^{2}\, \mathrm d x $$ | 17 |
| 13 | $$ \displaystyle\int^{1}_{0} {x}^{2}+1\, \mathrm d x $$ | 17 |
| 14 | $$ \displaystyle\int \cos\left(x\right)\, \mathrm d x $$ | 17 |
| 15 | $$ \displaystyle\int^{\pi}_{0} \sin\left(x\right)\, \mathrm d x $$ | 17 |
| 16 | $$ $$ | 16 |
| 17 | $$ $$ | 16 |
| 18 | $$ \displaystyle\int^{\pi/4}_{0} \sin\left(x\right)\, \mathrm d x $$ | 14 |
| 19 | $$ $$ | 14 |
| 20 | $$ \displaystyle\int^{e}_{1} x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 14 |
| 21 | $$ \displaystyle\int^{\pi/2}_{0} \sin\left(x\right)\, \mathrm d x $$ | 13 |
| 22 | $$ $$ | 13 |
| 23 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 13 |
| 24 | $$ $$ | 13 |
| 25 | $$ $$ | 12 |
| 26 | $$ $$ | 12 |
| 27 | $$ $$ | 11 |
| 28 | $$ \displaystyle\int {\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 11 |
| 29 | $$ \displaystyle\int \dfrac{1}{x}\, \mathrm d x $$ | 11 |
| 30 | $$ $$ | 11 |
| 31 | $$ $$ | 11 |
| 32 | $$ $$ | 10 |
| 33 | $$ $$ | 10 |
| 34 | $$ $$ | 10 |
| 35 | $$ \displaystyle\int \dfrac{1}{{x}^{2}}\, \mathrm d x $$ | 10 |
| 36 | $$ \displaystyle\int^{\infty}_{0} 2x{\cdot}{\mathrm{e}}^{-2x}\, \mathrm d x $$ | 10 |
| 37 | $$ $$ | 10 |
| 38 | $$ \displaystyle\int \sin\left(x\right)\, \mathrm d x $$ | 10 |
| 39 | $$ \displaystyle\int \sqrt{\dfrac{{\mathrm{e}}^{x}}{2-{\mathrm{e}}^{x}}}\, \mathrm d x $$ | 10 |
| 40 | $$ \displaystyle\int \dfrac{1}{{\mathrm{e}}^{2}}\, \mathrm d x $$ | 9 |
| 41 | $$ $$ | 9 |
| 42 | $$ $$ | 9 |
| 43 | $$ \displaystyle\int^{3}_{0} \dfrac{18}{7-4x}+\dfrac{5x}{7-4x}\, \mathrm d x $$ | 9 |
| 44 | $$ \displaystyle\int^{6}_{0} 2x-{x}^{2}+4x\, \mathrm d x $$ | 9 |
| 45 | $$ \displaystyle\int \dfrac{2}{{x}^{3}}\, \mathrm d x $$ | 9 |
| 46 | $$ $$ | 9 |
| 47 | $$ \displaystyle\int^{10}_{0} 150-0.5x\, \mathrm d x $$ | 9 |
| 48 | $$ $$ | 9 |
| 49 | $$ $$ | 8 |
| 50 | $$ $$ | 8 |