Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1 | $$ \displaystyle\int \dfrac{\cos\left(4x\right)}{\sin\left(2x\right){\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 551 |
2 | $$ $$ | 89 |
3 | $$ \displaystyle\int {x}^{2}+3x-1\, \mathrm d x $$ | 52 |
4 | $$ \displaystyle\int \dfrac{1}{1+{x}^{4}}\, \mathrm d x $$ | 30 |
5 | $$ \displaystyle\int^{\pi/3}_{\pi/6} \dfsqrtac{\cos\left(4x\sqrtight)}{\sin\left(2x\sqrtight){\cdot}\cos\left(2x\sqrtight)}\, \mathsqrtm d x $$ | 21 |
6 | $$ $$ | 18 |
7 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{1+{x}^{6}}\, \mathrm d x $$ | 18 |
8 | $$ $$ | 18 |
9 | $$ \displaystyle\int {x}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 17 |
10 | $$ \displaystyle\int {x}^{2}\, \mathrm d x $$ | 17 |
11 | $$ \displaystyle\int \cos\left(x\right)\, \mathrm d x $$ | 13 |
12 | $$ $$ | 12 |
13 | $$ $$ | 12 |
14 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 12 |
15 | $$ $$ | 11 |
16 | $$ $$ | 10 |
17 | $$ \displaystyle\int \sqrt{\dfrac{{\mathrm{e}}^{x}}{2-{\mathrm{e}}^{x}}}\, \mathrm d x $$ | 10 |
18 | $$ $$ | 10 |
19 | $$ \displaystyle\int^{1}_{0} {x}^{2}+1\, \mathrm d x $$ | 10 |
20 | $$ $$ | 10 |
21 | $$ \displaystyle\int^{\pi/4}_{0} \sin\left(x\right)\, \mathrm d x $$ | 10 |
22 | $$ \displaystyle\int^{3}_{0} \dfrac{18}{7-4x}+\dfrac{5x}{7-4x}\, \mathrm d x $$ | 9 |
23 | $$ \displaystyle\int^{10}_{0} 150-0.5x\, \mathrm d x $$ | 9 |
24 | $$ \displaystyle\int^{e}_{1} x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 9 |
25 | $$ $$ | 9 |
26 | $$ \displaystyle\int \dfrac{2}{{x}^{3}}\, \mathrm d x $$ | 9 |
27 | $$ \displaystyle\int \dfrac{1}{{\mathrm{e}}^{2}}\, \mathrm d x $$ | 9 |
28 | $$ $$ | 9 |
29 | $$ $$ | 9 |
30 | $$ \displaystyle\int+\dfrac{1}{1+{x}^{4}}\,+\mathrm+d+x $$ | 9 |
31 | $$ $$ | 9 |
32 | $$ $$ | 9 |
33 | $$ \displaystyle\int \mathrm{e}\, \mathrm d x $$ | 8 |
34 | $$ \displaystyle\int \dfrac{1}{x}\, \mathrm d x $$ | 8 |
35 | $$ \displaystyle\int 2{\cdot}\cot\left(4x\right)\, \mathrm d x $$ | 8 |
36 | $$ \displaystyle\int \sinh\left(3x+9\right){\cdot}x\, \mathrm d x $$ | 8 |
37 | $$ $$ | 8 |
38 | $$ $$ | 8 |
39 | $$ $$ | 8 |
40 | $$ \displaystyle\int \sin\left(x\right)\, \mathrm d x $$ | 8 |
41 | $$ \displaystyle\int \dfrac{x}{7-2x}\, \mathrm d x $$ | 8 |
42 | $$ $$ | 8 |
43 | $$ $$ | 8 |
44 | $$ $$ | 8 |
45 | $$ $$ | 8 |
46 | $$ \displaystyle\int^{20}_{0} 0.0261{x}^{2}+3.1021x+1.1865\, \mathrm d x $$ | 7 |
47 | $$ \displaystyle\int 1-\dfrac{1}{{x}^{2}}\, \mathrm d x $$ | 7 |
48 | $$ \displaystyle\int^{4}_{0} 0.02{x}^{2}+4\, \mathrm d x $$ | 7 |
49 | $$ $$ | 7 |
50 | $$ \displaystyle\int^{\pi/2}_{0} \sin\left(x\right)\, \mathrm d x $$ | 7 |