Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1 | $$ \displaystyle\int \dfrac{\cos\left(4x\right)}{\sin\left(2x\right){\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 413 |
2 | $$ \displaystyle\int {x}^{2}+3x-1\, \mathrm d x $$ | 24 |
3 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{1+{x}^{6}}\, \mathrm d x $$ | 18 |
4 | $$ \displaystyle\int \dfrac{1}{1+{x}^{4}}\, \mathrm d x $$ | 15 |
5 | $$ $$ | 11 |
6 | $$ \displaystyle\int^{10}_{0} 150-0.5x\, \mathrm d x $$ | 9 |
7 | $$ \displaystyle\int {x}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 8 |
8 | $$ \displaystyle\int \dfrac{1}{x}\, \mathrm d x $$ | 8 |
9 | $$ \displaystyle\int^{30}_{0} \dfrac{2000{\cdot}30}{150-0.5x}\, \mathrm d x $$ | 7 |
10 | $$ \displaystyle\int^{1}_{0} \sin\left({x}^{2}\right)\, \mathrm d x $$ | 6 |
11 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{x}^{3}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 6 |
12 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{3+2{x}^{2}}\, \mathrm d x $$ | 6 |
13 | $$ \displaystyle\int^{1}_{0} {x}^{2}+1\, \mathrm d x $$ | 6 |
14 | $$ \displaystyle\int \dfrac{1}{{x}^{3}+1}\, \mathrm d x $$ | 5 |
15 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 5 |
16 | $$ \displaystyle\int {x}^{2}\, \mathrm d x $$ | 5 |
17 | $$ \displaystyle\int^{\pi/2}_{0} \sqrt{\sin\left(x\right)}{\cdot}{\left(\cos\left(x\right)\right)}^{5}\, \mathrm d x $$ | 5 |
18 | $$ \displaystyle\int \dfrac{x{\cdot}\cos\left(2\right){\cdot}{x}^{2}}{\sqrt{1}}-4{x}^{4}\, \mathrm d x $$ | 5 |
19 | $$ \displaystyle\int^{1}_{0} {\mathrm{e}}^{{x}^{2}}\, \mathrm d x $$ | 5 |
20 | $$ \displaystyle\int 3x+2\, \mathrm d x $$ | 5 |
21 | $$ \displaystyle\int 150-0.5x\, \mathrm d x $$ | 5 |
22 | $$ \displaystyle\int 2{\cdot}\cot\left(4x\right)\, \mathrm d x $$ | 5 |
23 | $$ $$ | 5 |
24 | $$ \displaystyle\int 6x{\cdot}{\left(3+x\right)}^{-2}\, \mathrm d x $$ | 5 |
25 | $$ \displaystyle\int \dfrac{1}{{\left(\cos\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 5 |
26 | $$ \displaystyle\int \dfrac{1}{x}-\color{orangered}{\square}\, \mathrm d x $$ | 5 |
27 | $$ \displaystyle\int x{\cdot}\sin\left(3{x}^{2}+{\pi}\right)\, \mathrm d x $$ | 4 |
28 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{x}\, \mathrm d x $$ | 4 |
29 | $$ \displaystyle\int^{\pi/2}_{-\pi/2} 2{\cdot}\csc\left(x\right)-\csc\left(x\right)\, \mathrm d x $$ | 4 |
30 | $$ \displaystyle\int \mathrm{e}^{2x}\, \mathrm d x $$ | 4 |
31 | $$ \displaystyle\int \mathrm{e}^{2x}{\cdot}\cos\left(3x\right)\, \mathrm d x $$ | 4 |
32 | $$ \displaystyle\int {x}^{-1}\, \mathrm d x $$ | 4 |
33 | $$ $$ | 4 |
34 | $$ \displaystyle\int \sqrt{1-{x}^{2}}\, \mathrm d x $$ | 4 |
35 | $$ \displaystyle\int^{3}_{-1} \dfrac{14-6{x}^{2}}{4}\, \mathrm d x $$ | 4 |
36 | $$ \displaystyle\int^{8.682}_{0} {\left(-\sqrt{\dfrac{x}{10}}-\sin\left(0.5x\right)\right)}^{2}\, \mathrm d x $$ | 4 |
37 | $$ $$ | 4 |
38 | $$ \displaystyle\int^{3\pi/2}_{\pi} \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 4 |
39 | $$ \displaystyle\int \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 4 |
40 | $$ \displaystyle\int \dfrac{1}{\sqrt{4{x}^{2}+9}}\, \mathrm d x $$ | 4 |
41 | $$ \displaystyle\int {x}^{\frac{2}{5}}\, \mathrm d x $$ | 4 |
42 | $$ $$ | 4 |
43 | $$ \displaystyle\int \sinh\left(3x+9\right){\cdot}x\, \mathrm d x $$ | 4 |
44 | $$ $$ | 4 |
45 | $$ \displaystyle\int \dfrac{{x}^{3}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 4 |
46 | $$ \displaystyle\int^{2\pi}_{0} x{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 4 |
47 | $$ $$ | 4 |
48 | $$ \displaystyle\int \csc\left(x\right)\, \mathrm d x $$ | 4 |
49 | $$ \displaystyle\int^{2}_{1} \left(x-2\right){\cdot}\ln\left(x\right)-{x}^{2}+3x-2\, \mathrm d x $$ | 4 |
50 | $$ \displaystyle\int^{5}_{-5} \dfrac{1}{x}\, \mathrm d x $$ | 4 |