Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5101 | $$ \displaystyle\int \dfrac{{x}^{4}-1}{{x}^{2}sq{\cdot}\sqrt{t}{\cdot}\left({x}^{4}+{x}^{2}+1\right)}\, \mathrm d x $$ | 1 |
| 5102 | $$ \displaystyle\int \dfrac{{x}^{4}-1}{{x}^{2}{\cdot}\sqrt{{x}^{4}+{x}^{2}+1}}\, \mathrm d x $$ | 1 |
| 5103 | $$ \displaystyle\int \dfrac{\ln\left(x\right)-1}{1+l}\, \mathrm d x $$ | 1 |
| 5104 | $$ \displaystyle\int \dfrac{\ln\left(x\right)-1}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 5105 | $$ \displaystyle\int {\left(\dfrac{\ln\left(x\right)-1}{1+{\left(\ln\left(x\right)\right)}^{2}}\right)}^{2}\, \mathrm d x $$ | 1 |
| 5106 | $$ \displaystyle\int \dfrac{\ln\left(x\right)-1}{1+{\left(\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5107 | $$ \displaystyle\int {\left(\dfrac{\ln\left(x\right)-1}{1+{\left(\ln\left(x\right)\right)}^{2}}\right)}^{2}\, \mathrm d x $$ | 1 |
| 5108 | $$ \int {\exp{{\left(-\frac{{x}}{{4}}\right)}}} \, d\,x $$ | 1 |
| 5109 | $$ \int^{8}_{\infty} {\exp{{\left(-\frac{{x}}{{4}}\right)}}} \, d\,x $$ | 1 |
| 5110 | $$ \int^{1}_{0} {x}\cdot{\exp{{\left({2}\cdot{x}\right)}}} \, d\,x $$ | 1 |
| 5111 | $$ \int^{0}_{-\infty} {x}\cdot{\exp{{\left({2}\cdot{x}\right)}}} \, d\,x $$ | 1 |
| 5112 | $$ \int^{\infty}_{8} {\exp{{\left(-\frac{{x}}{{4}}\right)}}} \, d\,x $$ | 1 |
| 5113 | $$ \int^{\pi/2}_{0} \frac{{1}}{{{3}-{2}\cdot{\cos{{\left({x}\right)}}}}} \, d\,x $$ | 1 |
| 5114 | $$ \int \frac{{\exp{{\left({2}\cdot{x}\right)}}}}{{{1}+{\exp{{\left({x}\right)}}}}} \, d\,x $$ | 1 |
| 5115 | $$ \int \frac{{{x}^{{3}}+{1}}}{{{x}^{{2}}-{x}}} \, d\,x $$ | 1 |
| 5116 | $$ $$ | 1 |
| 5117 | $$ $$ | 1 |
| 5118 | $$ $$ | 1 |
| 5119 | $$ $$ | 1 |
| 5120 | $$ $$ | 1 |
| 5121 | $$ $$ | 1 |
| 5122 | $$ $$ | 1 |
| 5123 | $$ $$ | 1 |
| 5124 | $$ $$ | 1 |
| 5125 | $$ $$ | 1 |
| 5126 | $$ $$ | 1 |
| 5127 | $$ $$ | 1 |
| 5128 | $$ $$ | 1 |
| 5129 | $$ $$ | 1 |
| 5130 | $$ $$ | 1 |
| 5131 | $$ $$ | 1 |
| 5132 | $$ $$ | 1 |
| 5133 | $$ $$ | 1 |
| 5134 | $$ $$ | 1 |
| 5135 | $$ $$ | 1 |
| 5136 | $$ \displaystyle\int^{\pi/2}_{0} \color{orangered}{\square}\, \mathrm d x $$ | 1 |
| 5137 | $$ \displaystyle\int^{3}_{----2} x+2-({x}^{2}+2x)\, \mathrm d x $$ | 1 |
| 5138 | $$ \displaystyle\int x+2-({x}^{2}+2x)\, \mathrm d x $$ | 1 |
| 5139 | $$ $$ | 1 |
| 5140 | $$ $$ | 1 |
| 5141 | $$ $$ | 1 |
| 5142 | $$ $$ | 1 |
| 5143 | $$ $$ | 1 |
| 5144 | $$ $$ | 1 |
| 5145 | $$ $$ | 1 |
| 5146 | $$ $$ | 1 |
| 5147 | $$ $$ | 1 |
| 5148 | $$ $$ | 1 |
| 5149 | $$ $$ | 1 |
| 5150 | $$ \displaystyle\int \dfrac{1}{\left(2x+1\right){\cdot}\sqrt{{x}^{2}+1}}\, \mathrm d x $$ | 1 |