Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5151 | $$ \displaystyle\int \dfrac{1}{9{\cdot}{\left(\cos\left(x\right)\right)}^{2}-16{\cdot}{\left(\sin\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5152 | $$ \displaystyle\int \dfrac{2+2{\cdot}\cosh\left(x\right)-\sinh\left(x\right)}{2+2{\cdot}\cosh\left(x\right)+\sinh\left(x\right)}\, \mathrm d x $$ | 1 |
| 5153 | $$ \displaystyle\int \sin\left(3x\right)-\dfrac{1}{2}\, \mathrm d x $$ | 1 |
| 5154 | $$ \displaystyle\int^{5\pi/18}_{\pi/18} \sin\left(3x\right)-\dfrac{1}{2}\, \mathrm d x $$ | 1 |
| 5155 | $$ \displaystyle\int \dfrac{4}{x{\cdot}{\left(\ln\left(5x\right)\right)}^{7}}\, \mathrm d x $$ | 1 |
| 5156 | $$ $$ | 1 |
| 5157 | $$ $$ | 1 |
| 5158 | $$ $$ | 1 |
| 5159 | $$ $$ | 1 |
| 5160 | $$ $$ | 1 |
| 5161 | $$ $$ | 1 |
| 5162 | $$ $$ | 1 |
| 5163 | $$ $$ | 1 |
| 5164 | $$ $$ | 1 |
| 5165 | $$ $$ | 1 |
| 5166 | $$ $$ | 1 |
| 5167 | $$ $$ | 1 |
| 5168 | $$ $$ | 1 |
| 5169 | $$ \displaystyle\int \dfrac{1-4x+8{x}^{2}-8{x}^{3}}{{x}^{4}{\cdot}{\left(2{x}^{2}-2x+1\right)}^{2}}\, \mathrm d x $$ | 1 |
| 5170 | $$ \displaystyle\int x{\cdot}{\left(1+{x}^{2}\right)}^{\frac{1}{3}}\, \mathrm d x $$ | 1 |
| 5171 | $$ \displaystyle\int^{2\pi}_{\pi/2} x{\cdot}{\left(1+{x}^{2}\right)}^{\frac{1}{3}}\, \mathrm d x $$ | 1 |
| 5172 | $$ \displaystyle\int^{3}_{0} 15{\cdot}\left(3-x\right){\cdot}2{\pi}{\cdot}x\, \mathrm d x $$ | 1 |
| 5173 | $$ \displaystyle\int^{1}_{0} \dfrac{3{x}^{3}-{x}^{2}+2x-4}{s}{\cdot}qsq{\cdot}\sqrt{t}{\cdot}t{\cdot}\left({x}^{2}-3x+2\right)\, \mathrm d x $$ | 1 |
| 5174 | $$ \displaystyle\int \dfrac{{x}^{2}}{sq{\cdot}\sqrt{t}{\cdot}\left({x}^{2}-1\right)}\, \mathrm d x $$ | 1 |
| 5175 | $$ \displaystyle\int \dfrac{{x}^{2}}{\sqrt{{x}^{2}-1}}\, \mathrm d x $$ | 1 |
| 5176 | $$ \displaystyle\int \dfrac{{\left(\ln\left(x\right)\right)}^{0.5}}{x}\, \mathrm d x $$ | 1 |
| 5177 | $$ \displaystyle\int^{3}_{2} \dfrac{x}{\sqrt{{x}^{2}+x}}\, \mathrm d x $$ | 1 |
| 5178 | $$ $$ | 1 |
| 5179 | $$ $$ | 1 |
| 5180 | $$ $$ | 1 |
| 5181 | $$ \displaystyle\int^{3}_{2} \left(x+1\right){\cdot}\left(3x-5\right)\, \mathrm d x $$ | 1 |
| 5182 | $$ \displaystyle\int^{0}_{8} 13.201{\mathrm{e}}^{-0.003}\, \mathrm d x $$ | 1 |
| 5183 | $$ \displaystyle\int^{8}_{0} 13.201{\mathrm{e}}^{-0.003}\, \mathrm d x $$ | 1 |
| 5184 | $$ \displaystyle\int^{2\pi}_{0} 16{\cdot}\cos\left(x\right)-4{\cdot}{\left(\cos\left(x\right)\right)}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
| 5185 | $$ \displaystyle\int 16{\cdot}\cos\left(x\right)-4{\cdot}{\left(\cos\left(x\right)\right)}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
| 5186 | $$ \displaystyle\int^{2}_{0} \dfrac{3}{8}{\cdot}{x}^{3}\, \mathrm d x $$ | 1 |
| 5187 | $$ $$ | 1 |
| 5188 | $$ $$ | 1 |
| 5189 | $$ $$ | 1 |
| 5190 | $$ $$ | 1 |
| 5191 | $$ $$ | 1 |
| 5192 | $$ $$ | 1 |
| 5193 | $$ $$ | 1 |
| 5194 | $$ \displaystyle\int^{1}_{0} sq{\cdot}\sqrt{t}{\cdot}\left({x}^{2}-2x+1\right)\, \mathrm d x $$ | 1 |
| 5195 | $$ \displaystyle\int^{1}_{0} \sqrt{{x}^{2}-2x+1}\, \mathrm d x $$ | 1 |
| 5196 | $$ \displaystyle\int 14{\cdot}\sqrt{5}\, \mathrm d x $$ | 1 |
| 5197 | $$ \displaystyle\int 1-{x}^{2}\, \mathrm d x $$ | 1 |
| 5198 | $$ \displaystyle\int \dfrac{x}{\sin\left(x\right)}\, \mathrm d x $$ | 1 |
| 5199 | $$ \displaystyle\int^{10}_{5} \sqrt{x+\sqrt{20x-100}}+\sqrt{x-\sqrt{20x-100}}\, \mathrm d x $$ | 1 |
| 5200 | $$ \displaystyle\int {x}^{3}-\dfrac{1}{1}\, \mathrm d x $$ | 1 |