Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 5051 | $$ $$ | 1 |
| 5052 | $$ $$ | 1 |
| 5053 | $$ $$ | 1 |
| 5054 | $$ $$ | 1 |
| 5055 | $$ $$ | 1 |
| 5056 | $$ $$ | 1 |
| 5057 | $$ $$ | 1 |
| 5058 | $$ $$ | 1 |
| 5059 | $$ $$ | 1 |
| 5060 | $$ $$ | 1 |
| 5061 | $$ $$ | 1 |
| 5062 | $$ $$ | 1 |
| 5063 | $$ $$ | 1 |
| 5064 | $$ $$ | 1 |
| 5065 | $$ $$ | 1 |
| 5066 | $$ $$ | 1 |
| 5067 | $$ $$ | 1 |
| 5068 | $$ $$ | 1 |
| 5069 | $$ $$ | 1 |
| 5070 | $$ $$ | 1 |
| 5071 | $$ $$ | 1 |
| 5072 | $$ $$ | 1 |
| 5073 | $$ $$ | 1 |
| 5074 | $$ $$ | 1 |
| 5075 | $$ $$ | 1 |
| 5076 | $$ $$ | 1 |
| 5077 | $$ $$ | 1 |
| 5078 | $$ $$ | 1 |
| 5079 | $$ $$ | 1 |
| 5080 | $$ $$ | 1 |
| 5081 | $$ $$ | 1 |
| 5082 | $$ $$ | 1 |
| 5083 | $$ \displaystyle\int \sqrt{16-{x}^{2}}\, \mathrm d x $$ | 1 |
| 5084 | $$ $$ | 1 |
| 5085 | $$ $$ | 1 |
| 5086 | $$ \displaystyle\int \cos\left(\dfrac{2{\pi}{\cdot}x}{l}\right)\, \mathrm d x $$ | 1 |
| 5087 | $$ \displaystyle\int^{10}_{0} \cos\left(\dfrac{2{\pi}{\cdot}x}{l}\right)\, \mathrm d x $$ | 1 |
| 5088 | $$ $$ | 1 |
| 5089 | $$ $$ | 1 |
| 5090 | $$ \displaystyle\int \dfrac{3}{x{\cdot}\sqrt{{x}^{2}-9}}\, \mathrm d x $$ | 1 |
| 5091 | $$ \displaystyle\int \ln\left({\mathrm{e}}^{2x-1}\right)\, \mathrm d x $$ | 1 |
| 5092 | $$ \displaystyle\int \sqrt{x}+\dfrac{1}{6{\cdot}\sqrt{x}}\, \mathrm d x $$ | 1 |
| 5093 | $$ \displaystyle\int \dfrac{\dfrac{{x}^{5}}{{\left(1-{x}^{3}\right)}^{3}}}{2}\, \mathrm d x $$ | 1 |
| 5094 | $$ \displaystyle\int \dfrac{{x}^{5}}{{\left(1-{x}^{3}\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 1 |
| 5095 | $$ \displaystyle\int \dfrac{1}{{\left(2{\cdot}\ln\left(x\right)+3\right)}^{2}-1}\, \mathrm d x $$ | 1 |
| 5096 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{x}^{4}}{{\mathrm{e}}^{x}-1}\, \mathrm d x $$ | 1 |
| 5097 | $$ \displaystyle\int \dfrac{\mathrm{arcsec}\left(x\right)}{x{\cdot}{\left(\sqrt{x}\right)}^{2}-1}\, \mathrm d x $$ | 1 |
| 5098 | $$ \displaystyle\int 3-\sqrt{{x}^{2}+x+4{\cdot}\cos\left(x\right)}\, \mathrm d x $$ | 1 |
| 5099 | $$ \displaystyle\int^{0}_{9} 7x{\cdot}{\mathrm{e}}^{\cos\left(x\right)}\, \mathrm d x $$ | 1 |
| 5100 | $$ \displaystyle\int \dfrac{{x}^{4}-1}{{x}^{3}{\cdot}\sqrt{{x}^{4}+{x}^{2}+1}}\, \mathrm d x $$ | 1 |